


PacMan capture-the-flag 



The rules 
  Scoring:  When a Pacman eats a food dot, the food is 

permanently removed and one point is scored for that 
Pacman's team. Red team scores are positive, while Blue team 
scores are negative.  

  Eating Pacman: When a Pacman is eaten by an opposing 
ghost, it returns to its starting position (as a ghost). No points 
are awarded for eating an opponent.  

  Winning: A game ends when either one team eats all of the 
opponents' dots, or after 3000 agent moves.  A final positive 
score means that the Red team wins, a negative one means 
that Blue wins.  

  Observations: Agents can only observe an opponent's 
configuration (position and direction) if they or their 
teammate is within 5 squares (Manhattan distance). In addition, 
an agent always gets a noisy distance reading for each agent on 
the board, which can be used to approximately locate 
unobserved opponents.  



The tournament 
  On Day 3, we’ll have some practice rounds for those who 

have agents ready to test 
  On Day 4, we’ll have a all-against-all tournament 
  The mazes for the final tournament will vary, test your 

agents with different layouts 



Running a game 
  Code in winterschool/project/pacman 
  Warning:  the style of the PacMan code is not an example 

to follow! 
  2-spaces indentation, and camelCaseNames are bad style! 
  Stick to the Python standard, i.e., 4-spaces, 

underscore_separated_names 

  To run a match: 
  python capture.py –r MyAgentFactory 
                     –b YourAgentFactory 

        -l layout_name --fps=100 

other options: 
    python capture.py --help 



Writing agents 101 – AgentFactory 
  Called by main application, given an agent index returns 

an Agent instance: 
python capture.py --red MyAgentFactory 

  Looks in all *gents.py files in your PYTHONPATH 

class OffenseDefenseAgents(AgentFactory): 
 """ Returns one defensive agent and one offensive agent""" 

  def __init__(self, **args): 
    AgentFactory.__init__(self, **args) 
    self.offense = False 

  def getAgent(self, index): 
    self.offense = not self.offense 
    if self.offense: 
      return OffensiveReflexAgent(index) 
    else: 
      return DefensiveReflexAgent(index) 



Writing agents 101 – Agent 

class Agent: 
  def __init__(self, index=0): 
    self.index = index 

  def getAction(self, game_state): 
    """ 
    The Agent will receive a GameState and 
    must return an action from 
    game.Directions.{NORTH,SOUTH,EAST,WEST,STOP} 
    """ 
    pass 

Every agent is identified by an index. 



Writing agents 101 – basic_agents.BasicAgent 
  We recommend to use our subclass, 

basic_agents.BasicAgent, which is more pythonic and 
defines helpful methods to analyze the game state 

  (wiki) 



Writing agents 101 – capture.GameState 
  Represents the state of the game, can be asked for useful 

information 
  (wiki) 



Writing agents 101 – Example agent 

import random 
from basic_agents import BasicAgent, BasicAgentFactory 

class DrunkAgent(BasicAgent): 
    def choose_action(self, game_state): 
        self.say(random.choice(['Burp', 'Blah', 'Mrmmmf'])) 
        actions = game_state.getLegalActions(self.index) 
        return random.choice(actions) 

More in winterschool/project/agents 



Writing agents 101 – Testing agents 
  Very useful: the alternative is to run games, hope that the 

agents end up in the right situation, guess from looking at 
the screen if it behaved correctly 

  More sophisticated testing scenario: you need to set up a 
fake game (“mock” game), put the agents in the correct 
situation, then run them and analyze their behavior 

  (wiki) 



Basic agent behaviors – Finite States Machines 

Going to 
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Think about the 
State Pattern! 



Basic agent behaviors – Value-maximizer 
  Agent has a function that gives a value to a given game state 

according to several criteria, e.g. 
value(game_state) = -1*distance_from_nearest_food 

      +100*score 
  At each turn: 

  get the legal actions game_state.getLegalActions
(self.index) 

  request the future game state given one of the actions 
game_state.generateSuccessor(self.index, action) 

  compute the value of future states 
  pick the action that leads to the state with the highest value 



Learning 
  Plenty of opportunities for learning 

  Adapt parameters according to final score 
  Reinforcement Learning (similar to learning weights in the 

value-maximizing agent) 
  Collect statistics on opponents 
  Ambitious:  Genetic Programming 
  ... 



Things that we’ve found to be useful 
  Shortest-path algorithm 
  Algorithm to keep track of opponents 
  Communication between agents 
  ... 

  Code re-use is encouraged 
  More important than fancy strategies is the quality of 

your code: Is it well tested? Does it conform to 
standards? Apply agile development techniques 



Let’s start! 
  Form 5 teams of 6 people (wiki) 
  Test that you can write and run matches with simple 

agents  
  your PYTHONPATH should contain 
export PYTHONPATH=$HOME/winterschool/project/pacman; 
          $HOME/winterschool/project/agents 

  set up your project directory,  put in the PYTHONPATH 
  write a RandomAgent and corresponding AgentFactory,  try to 

have a few matches with different layouts 
  write an agent that picks a random direction at junctions 

  Organize team work 
  Have fun! 


