

PacMan capture-the-flag

The rules
  Scoring: When a Pacman eats a food dot, the food is

permanently removed and one point is scored for that
Pacman's team. Red team scores are positive, while Blue team
scores are negative.

  Eating Pacman: When a Pacman is eaten by an opposing
ghost, it returns to its starting position (as a ghost). No points
are awarded for eating an opponent.

  Winning: A game ends when either one team eats all of the
opponents' dots, or after 3000 agent moves. A final positive
score means that the Red team wins, a negative one means
that Blue wins.

  Observations: Agents can only observe an opponent's
configuration (position and direction) if they or their
teammate is within 5 squares (Manhattan distance). In addition,
an agent always gets a noisy distance reading for each agent on
the board, which can be used to approximately locate
unobserved opponents.

The tournament
  On Day 3, we’ll have some practice rounds for those who

have agents ready to test
  On Day 4, we’ll have a all-against-all tournament
  The mazes for the final tournament will vary, test your

agents with different layouts

Running a game
  Code in winterschool/project/pacman
  Warning: the style of the PacMan code is not an example

to follow!
  2-spaces indentation, and camelCaseNames are bad style!
  Stick to the Python standard, i.e., 4-spaces,

underscore_separated_names

  To run a match:
 python capture.py –r MyAgentFactory
 –b YourAgentFactory

 -l layout_name --fps=100

other options:
 python capture.py --help

Writing agents 101 – AgentFactory
  Called by main application, given an agent index returns

an Agent instance:
python capture.py --red MyAgentFactory

  Looks in all *gents.py files in your PYTHONPATH

class OffenseDefenseAgents(AgentFactory):
 """ Returns one defensive agent and one offensive agent"""

 def __init__(self, **args):
 AgentFactory.__init__(self, **args)
 self.offense = False

 def getAgent(self, index):
 self.offense = not self.offense
 if self.offense:
 return OffensiveReflexAgent(index)
 else:
 return DefensiveReflexAgent(index)

Writing agents 101 – Agent

class Agent:
 def __init__(self, index=0):
 self.index = index

 def getAction(self, game_state):
 """
 The Agent will receive a GameState and
 must return an action from
 game.Directions.{NORTH,SOUTH,EAST,WEST,STOP}
 """
 pass

Every agent is identified by an index.

Writing agents 101 – basic_agents.BasicAgent
  We recommend to use our subclass,

basic_agents.BasicAgent, which is more pythonic and
defines helpful methods to analyze the game state

  (wiki)

Writing agents 101 – capture.GameState
  Represents the state of the game, can be asked for useful

information
  (wiki)

Writing agents 101 – Example agent

import random
from basic_agents import BasicAgent, BasicAgentFactory

class DrunkAgent(BasicAgent):
 def choose_action(self, game_state):
 self.say(random.choice(['Burp', 'Blah', 'Mrmmmf']))
 actions = game_state.getLegalActions(self.index)
 return random.choice(actions)

More in winterschool/project/agents

Writing agents 101 – Testing agents
  Very useful: the alternative is to run games, hope that the

agents end up in the right situation, guess from looking at
the screen if it behaved correctly

  More sophisticated testing scenario: you need to set up a
fake game (“mock” game), put the agents in the correct
situation, then run them and analyze their behavior

  (wiki)

Basic agent behaviors – Finite States Machines

Going to
opponent

half

Looking
for food

START

arrived in
opponent’s

half

Fleeing

opponent
very close

arrived in
your half

opponent
far away

Think about the
State Pattern!

Basic agent behaviors – Value-maximizer
  Agent has a function that gives a value to a given game state

according to several criteria, e.g.
value(game_state) = -1*distance_from_nearest_food

 +100*score
  At each turn:

  get the legal actions game_state.getLegalActions
(self.index)

  request the future game state given one of the actions
game_state.generateSuccessor(self.index, action)

  compute the value of future states
  pick the action that leads to the state with the highest value

Learning
  Plenty of opportunities for learning

  Adapt parameters according to final score
  Reinforcement Learning (similar to learning weights in the

value-maximizing agent)
  Collect statistics on opponents
  Ambitious: Genetic Programming
  ...

Things that we’ve found to be useful
  Shortest-path algorithm
  Algorithm to keep track of opponents
  Communication between agents
  ...

  Code re-use is encouraged
  More important than fancy strategies is the quality of

your code: Is it well tested? Does it conform to
standards? Apply agile development techniques

Let’s start!
  Form 5 teams of 6 people (wiki)
  Test that you can write and run matches with simple

agents
  your PYTHONPATH should contain
export PYTHONPATH=$HOME/winterschool/project/pacman;
 $HOME/winterschool/project/agents

  set up your project directory, put in the PYTHONPATH
  write a RandomAgent and corresponding AgentFactory, try to

have a few matches with different layouts
  write an agent that picks a random direction at junctions

  Organize team work
  Have fun!

