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Motivation

Computing a Polynomial

We want to compute the next polynomial:

y =0.25x340.75x2 — 1.5x — 2

in the range [-1, 1], with a granularity of 107in the x axis
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Motivation

Computing a Polynomial

We want to compute the next polynomial:

y =0.25x340.75x2 — 1.5x — 2

in the range [-1, 1], with a granularity of 107in the x axis
...and want to do that as FAST as possible...
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Motivation

Use NumPy

NumPy is a powerful package that let you perform calculations with
Python, but at C speed:

Computing y = 0.25x3 +0.75x2 — 1.5x — 2 with NumPy
import numpy as np

N = 10%1000%1000
x = np.linspace(-1, 1, N)
y = .25%x*%*%3 + ,75kx**%2 - 1.b%x - 2

That takes around 1.20 sec on our machine (Intel Core2 @ 2.4
GHz). How to make it faster?
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Motivation

'Quick & Dirty" Approach: Parallelize

@ The problem of computing a polynomial is “embarrassingly”
parallelizable: just divide the domain to compute in N chunks
and evaluate the expression for each chunk.

@ This can be easily implemented in Python by, for example,
using the multiprocessing module (so as to bypass the
GIL). See poly-mp.py script.

@ Using 2 cores, the 1.20 sec is reduced down to 0.76 sec, which
is a 1.6x improvement. Pretty good!

@ We are done! Or perhaps not?
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Motivation

Another (Much Easier) Approach: Factorize

@ The NumPy expression:
(I) y = .25%x**3 + .75*x**2 - 1.B5%x - 2
can be rewritten as:
() y = ((.25%x + .75)*x - 1.5)*x - 2

@ With this, the time goes from 1.20 sec to 0.50 sec, which is
considerably faster than using two processors with the initial
approach (0.76 sec).

Francesc Alted Memory-Efficient Computing



Motivation

Another (Much Easier) Approach: Factorize

@ The NumPy expression:
(I) y = .25%x**3 + .75*x**2 - 1.B5%x - 2
can be rewritten as:
() y = ((.25%x + .75)*x - 1.5)*x - 2

@ With this, the time goes from 1.20 sec to 0.50 sec, which is
considerably faster than using two processors with the initial
approach (0.76 sec).

Give a chance to optimization before parallelizing!
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Motivation

Numexpr Can Compute Expressions Way Faster

Numexpr is a JIT compiler, based on NumPy, that optimizes the
evaluation of complex expressions. Its use is easy:

Computing y = 0.25x3 +0.75x2 — 1.5x — 2 with Numexpr

import numexpr as ne

N = 10%1000%1000
x = np.linspace(-1, 1, N)
y = ne.evaluate(’.25*x**3 + .7b*x**2 - 1.5%xx - 27)

That takes around 0.24 sec to complete, which is bx faster than the
original NumPy expression (1.20 sec).
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Motivation

Fine-tune Expressions with Numexpr

@ Numexpr is also sensible to computer-friendly expressions like:
() y = ((.25%x + .75)*x - 1.5)*x - 2

@ Numexpr takes 0.19 sec for the above (0.24 sec were needed
for the original expression, that's a 1.25x faster)
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Motivation

Summary and Open Questions

‘ ‘ 1 core ‘ 2 core ‘ Parallel Speed-up ‘

NumPy (1) | 1.20 | 0.76 1.6x
NumPy(1l) | 0.50 0.39 1.3x
Numexpr(l) | 0.24 | 0.14 1.7x
Numexpr(Il) | 0.19 | 0.12 1.7x

<() 0.075 | 0.055 1.4x

o If all the approaches perform the same computations, all in C
space, why the large differences in performance?

@ Why the different approaches does not scale similarly in
parallel mode?
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A Bit of Computing History
The Hierarchical mory Model
Fighting CPU Starvation

The Data Access Issue

Outline

© The Data Access Issue
@ A Bit of (Personal) Computing History
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

First Commodity Processors
(Early and middle 1980s)

@ Processors and memory evolved more or less in step.

@ Memory clock access in early 1980s was at ~ 1MHz, the same
speed than CPUs.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Intel 8086, 80286 and i386

(Middle and late 1980's)

@ Memory still pretty well matched CPU speed.
@ The 16MHz i386 came out; memory still could keep up with it.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Intel 1486 and AMD Am486

(Early 1990s)

@ Increases in memory speed started to stagnate, while CPU
clock rates continued to skyrocket to 100 MHz and beyond.

@ In a single-clock, a 100 MHz processor consumes a word from
memory every 10 nsec. This rate is impossible to sustain even
with present-day RAM.

@ The first on-chip cache appeared (8 KB for 486 and 16 Kb for
i486 DX).
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Intel Pentium and AMD K5/K6

(Middle and late 1990s)

@ Processor speeds reached unparalleled extremes, before hitting
the magic 1 GHz figure.

@ A huge abyss opened between the processors and the memory
subsystem: up to 50 wait states for each memory read or write.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Intel Pentium 4 and AMD Athlon

(Early and middle 2000s)

@ The strong competition between Intel and AMD continued to
drive CPU clock cycles faster and faster (up to 0.25 ns, or 4
GHz).

@ The increased impedance mismatch with memory speeds
brought about the introduction of a second level cache.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Intel Core2 and AMD Athlon X2

(Middle 2000s)

@ The size of integrated caches is getting really huge (up to 12
MB).

@ Chip makers realized that they can’t keep raising the frequency
forever — enter the multi-core age.
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A Bit of Computing History
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Fighting CPU Starvation

The Data Access Issue

Intel Core2 and AMD Athlon X2

(Middle 2000s)

@ The size of integrated caches is getting really huge (up to 12
MB).

@ Chip makers realized that they can’t keep raising the frequency
forever — enter the multi-core age.

@ Users start to scratch their heads, wondering how to take
advantage of multi-core machines.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Intel Core i7 and AMD Phenom

(Late 2000s)

@ 4-core on-chip CPUs become the most common configuration.

@ 3-levels of on-chip cache is the standard now.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Where We Are now

(2010)

@ Memory latency is much slower (around 150x) than processors
and has been an essential bottleneck for the past fifteen years.

@ Memory throughput is improving at a better rate than memory
latency, but it is also lagging behind processors (about 25x
slower).

@ In order to achieve better performance, CPU makers are
implementing additional levels of caches, as well as increasing
cache size.

@ Recently, CPU speeds have stalled as well, limited now by
power dissipation problems. So, in order to be able to offer
more speed, CPU vendors are packaging several processors
(cores) in the same die.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Outline

© The Data Access Issue

@ CPU Starvation and The Hierarchical Memory Model
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A Bit of Computing History
The Data Access Issue The Hierarchical Mbemory Model
Fighting CPU Starvation

The CPU Starvation Problem

@ Over the last 25 years CPUs have undergone an exponential
improvement on their ability to perform massive numbers of
calculations extremely quickly.

@ However, the memory subsystem hasn’t kept up with CPU
evolution.

@ The result is that CPUs in our current computers are suffering
from a serious starvation data problem: they could consume
(much!) more data than the system can possibly deliver.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Can't Memory Latency Be Reduced to Keep Up with CPUs?

@ To improve latency figures, we would need:

@ more wire layers
@ more complex ancillary logic
@ more frequency (and voltage):

Energy = Capacity x Voltage? x Frequency
@ That's too expensive for commodity SDRAM.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

What Is the Industry Doing to Alleviate CPU Starvation?

@ They are improving memory throughput: cheap to implement
(more data is transmitted on each clock cycle).

@ They are adding big caches in the CPU dies.
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A Bit of Computing History
The Data Access Issue The Hierarchical Mbemory Model
Fighting CPU Starvation

Why Is a Cache Useful?

@ Caches are closer to the processor (normally in the same die),
so both the latency and throughput are improved.

@ However: the faster they run the smaller they must be.
@ They are effective mainly in a couple of scenarios:

o Time locality: when the dataset is reused.
@ Spatial locality: when the dataset is accessed sequentially.
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A Bit of Computing History
The Hierarchical mory Model
Fighting CPU Starvation

The Data Access Issue

Time Locality

Parts of the dataset are reused

Cache

Memory (C array)
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A Bit of Computing History
The archical Memory Model
Fighting CPU Starvation

The Data Access Issue

Spatial Locality

Dataset is accessed sequentially

Good!

Line 1
Line 2

Bad

Memory (C array)
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

The Hierarchical Memory Model

@ Introduced by industry to cope with CPU data starvation
problems.

@ It consists in having several layers of memory with different
capabilities:

@ Lower levels (i.e. closer to the CPU) have higher speed, but
reduced capacity. Best suited for performing computations.

o Higher levels have reduced speed, but higher capacity. Best
suited for storage purposes.
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A Bit of Computing History
The Data Access Issue The Hierarchical Memory Model
Fighting CPU Starvation

The Primordial Hierarchical Memory Model

Two level hierarchy

Capacity
paads

Memory

CPU
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A Bit of Computing History
The Data Access Issue The Hierarchical Memory Model
Fighting CPU Starvation

The Current Hierarchical Memory Model

Four level hierarchy

Main Memory

Capacity
paads

Level 2 Cache

Level 1 Cache

CPU
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A Bit of Computing History
The Data Access Issue The Hierarchical Memory Model
Fighting CPU Starvation

The Forthcoming Hierarchical Memory Model

Six level (or more) hierarchy

—

Main Memory

Capacity
paads

Level 3 Cache

Level 2 Cache

Level 1 Cache ‘

CPU
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Outline

© The Data Access Issue

@ Techniques For Fighting CPU Starvation
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A Bit of Computing History
The Data Access Issue The Hierarchical Memory Model
Fighting CPU Starvation

Once Upon A Time...

@ In the 1970s and 1980s many computer scientists had to learn
assembly language in order to squeeze all the performance out
of their processors.

@ In the good old days, the processor was the key bottleneck.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Nowadays...

@ Every computer scientist must acquire a good knowledge of
the hierarchical memory model (and its implications) if they
want their applications to run at a decent speed (i.e. they do
not want their CPUs to starve too much).

@ Memory organization has become now the key factor for
optimizing.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Nowadays...

@ Every computer scientist must acquire a good knowledge of
the hierarchical memory model (and its implications) if they
want their applications to run at a decent speed (i.e. they do
not want their CPUs to starve too much).

@ Memory organization has become now the key factor for
optimizing.

The BIG difference is. ..

... learning assembly language is relatively easy, but understanding
how the hierarchical memory model works requires a considerable
amount of experience (it's almost more an art than a science!)
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

The Blocking Technique |

When you have to access memory, get a contiguous block that fits
in the CPU cache, operate upon it or reuse it as much as possible,
then write the block back to memory:

C = A <oper>B

Dataset A

CPU Dataset C

Dataset B
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

The Blocking Technique Il

@ This is not new at all: it has been in use for out-of-core
computations since the dawn of computers.

@ However, the meaning of out-of-core is changing, since the
core does not refer to the main memory anymore: it now
means something more like out-of-cache.

@ Although this technique is easy to apply in some cases (e.g.
element-wise array computations), it can be potentially
difficult to efficiently implement in others.
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The Data Access Issue

The Blocking Technique Il

@ This is not new at all: it has been in use for out-of-core
computations since the dawn of computers.

@ However, the meaning of out-of-core is changing, since the
core does not refer to the main memory anymore: it now
means something more like out-of-cache.

@ Although this technique is easy to apply in some cases (e.g.

element-wise array computations), it can be potentially
difficult to efficiently implement in others.

Good News!

Fortunately, many useful algorithms using blocking have been
developed by others that you can use ©
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

I'm A Python Guy, What Should | Do?

@ Can we, Python users, get maximum efficiency for our
programs? Simply put: Yes, we can.

@ To do this, it is a good idea to become familiar with all the
weaponry that Python and third-party packages offer: many
fine tools are waiting for you.

@ Then, you should take some time to think and try to express
your situation in terms of the problems these weapons are
designed to attack.

@ It is not generally possible to make your problem disappear
with a single swipe: this is an iterative process (you never stop
learning!)
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Use NumPy & Family

@ NumPy is the standard package for dealing with
multidimensional arrays in a flexible and efficient way.

@ There are many packages that add a great deal of functionality
to NumPy. Here are some:

SciPy (most of you should know what this is)
matplotlib (2-D plotter)

MayaVi (3-D visualizer)

PyTables (fast and easy access to data on-disk)
scikits.timeseries (manipulation of time series)

¢ © ¢ ¢ €

@ In case you don’t use GNU/Linux, distribution packages like
python(x,y) and EPD make your life (much!) easier.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Understand NumPy Memory Layout

Being “a” a squared array (4000x4000) of doubles, we have:

Summing up column-wise
al:,1] .sum() # takes 9.3 ms

Summing up row-wise: more than 100x faster (!)

altl,:].sum() # takes 72 us
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The Data Access Issue

Understand NumPy Memory Layout

Being “a” a squared array (4000x4000) of doubles, we have:

Summing up column-wise
al:,1].sum() # takes 9.3 ms

Summing up row-wise: more than 100x faster (!)
altl,:].sum() # takes 72 us

Remember:

NumPy arrays are ordered row-wise (C convention)
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Vectorize Your Code

Naive matrix-matrix multiplication: 1264 s (1000x1000 doubles)

def dot_naive(a,b): # 1.5 MFlops
c = np.zeros ((nrows, ncols), dtype=’£8’)
for row in xrange(nrows):
for col in xrange(ncols):
for i in xrange(nrows):
c[row,col] += alrow,i] * b[i,coll]

return c

\

Vectorized matrix-matrix multiplication: 20 s (64x faster)
def dot(a,b): # 100 MFlops

c = np.empty((nrows, ncols), dtype=’£8’)
for row in xrange(nrows):
for col in xrange(ncols):

cl[row, col]l = np.sum(alrow] * b[:,coll)

return c

>
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Make Use of Optimized Functions and Libraries

Using integrated BLAS: 5.6 s (3.5x faster than vectorized)
numpy .dot (a,b) # 350 MFlops

Using Intel's MKL: 0.11 s (50x faster than integrated BLAS)

numpy .dot (a,b) # 17 GFlops (2x12=24 GFlops peak)
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Make Use of Optimized Functions and Libraries

Using integrated BLAS: 5.6 s (3.5x faster than vectorized)
numpy .dot (a,b) # 350 MFlops

Using Intel's MKL: 0.11 s (50x faster than integrated BLAS)

numpy .dot (a,b) # 17 GFlops (2x12=24 GFlops peak)

Tip
If you are performing linear algebra calculations, you should try to

link NumPy with Atlas, Intel's MKL or similar tools: you will see a
significant boost in performance.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Numexpr: Dealing with Complex Expressions

Numexpr is a specialized virtual machine for evaluating expressions.
It accelerates computations by using blocking and by avoiding
temporaries.

For example, if “a” and “b” are vectors with 1 million entries each:

Using plain NumPy
ax*2 + b**2 + 2*a*b  # takes 33.3 ms

Using Numexpr: more than 4x faster!
numexpr.evaluate('a**2 + b**2 + 2*a*b’)# takes 8.0 ms
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The Data Access Issue

Numexpr: Dealing with Complex Expressions

Numexpr is a specialized virtual machine for evaluating expressions.
It accelerates computations by using blocking and by avoiding
temporaries.

For example, if “a” and “b” are vectors with 1 million entries each:

Using plain NumPy
a**2 + pb**2 + 2*a*b # takes 33.3 ms

Using Numexpr: more than 4x faster!

numexpr.evaluate('a**2 + b**2 + 2*a*b’)# takes 8.0 ms

Numexpr also has support for Intel's VML (Vector Math Library),
so you can accelerate the evaluation of transcendental (sin, cos,
atanh, sqrt...) functions too.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Operating with Very Large Arrays? Use tables.Expr

@ tables.Expr is an optimized evaluator for expressions of
disk-based arrays (introduced in PyTables 2.2b1).

@ It is a combination of the Numexpr advanced computing
capabilities with the high 1/O performance of PyTables.

@ It is similar to numpy .memmap, but with important
improvements:

@ Deals transparently (and efficiently!) with temporaries.

@ Works with arbitrarily large arrays, no matter how much virtual
memory is available, what version of OS version you're running
(works with both 32-bit and 64-bit OS's), which Python
version you're using (2.4 and higher), or what the phase of the
moon.

@ Can deal with compressed arrays seamlessly.
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

An Example of a tables.Expr Calculation

o Let “a” and “b" be single-precision matrices with 1 billion
entries (1000x1000000) each (total working set of 11.2 GB,
result included).

@ Compute the expression “a*b+1” on a 8 GB RAM machine:

Using numpy.memmap

r = np.memmap(rfilename, 'float32’, 'w+’, shape)
for i in xrange(nrows):# takes 166 s and 11.3 GB

ri] = eval(a*b+1’, {'a’:a]i], 'b’:b[i]})
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The Data Access Issue

An Example of a tables.Expr Calculation

o Let “a” and “b" be single-precision matrices with 1 billion
entries (1000x1000000) each (total working set of 11.2 GB,
result included).

@ Compute the expression “a*b+1” on a 8 GB RAM machine:

Using numpy.memmap

r = np.memmap(rfilename, 'float32’, 'w+’, shape)
for i in xrange(nrows):# takes 166 s and 11.3 GB

ri] = eval(a*b+1’, {'a’:a]i], 'b’:b[i]})

Using tables.Expr: 17% faster

r = f.createCArray(/’, 'r’, tb.Float32Atom(), shape)
e = th.Expr('a*b+1’)

e.setOutput(rl)

e.eval() #takes 141 s and 180 MB
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

tables.Expr and Compression

Activating compression can accelerate out-of-core computations in
many cases:

Using zlib (opt. level 1)

takes 78 s: 1.8x faster than with uncompressed arrays.
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tables.Expr and Compression

Activating compression can accelerate out-of-core computations in
many cases:

Using zlib (opt. level 1)

takes 78 s: 1.8x faster than with uncompressed arrays.

takes 57 s: 2.5x faster than with uncompressed arrays.
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The Data Access Issue

tables.Expr and Compression

Activating compression can accelerate out-of-core computations in
many cases:

Using zlib (opt. level 1)

takes 78 s: 1.8x faster than with uncompressed arrays.

takes 57 s: 2.5x faster than with uncompressed arrays.

Compression helps to get better performance in disk 1/0. No news. J
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A Bit of Computing History
The Hierarchical Memory Model
Fighting CPU Starvation

The Data Access Issue

Some Words about Multiple Cores and GIL

@ The Global Interpreter Lock effectively limits the use of several
cores simultaneously while in Python space.

@ However, most of the code out there is limited by memory
access, not CPU, so GIL is generally not a problem.

@ In addition, many optimized libraries unlock the GIL while
doing 1/0 or performing computations in C space, actually
allowing the use of several cores simultaneously.
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The Data Access Issue

Some Words about Multiple Cores and GIL

@ The Global Interpreter Lock effectively limits the use of several
cores simultaneously while in Python space.

@ However, most of the code out there is limited by memory
access, not CPU, so GIL is generally not a problem.

@ In addition, many optimized libraries unlock the GIL while
doing 1/0 or performing computations in C space, actually
allowing the use of several cores simultaneously.

Consider making multi-threaded or multi-process programs only as
a last resort . You should first see if CPU is the actual problem and
then try specialized packages (Atlas, MKL...) first.
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A Bit of Computing History
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The Data Access Issue

Time to Answer Some Pending Questions
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Eliminating Data Redundancy
Blosc: A BLOcking Shuffler & Compressor

The Role Of Compression PyTables & Blosc

Outline

© The Role Of Compression In Data Access
@ Eliminating Data Redundancy
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Eliminating Data Redundancy
A BLOcking Shuffler & Compressor

The Role Of Compression les & Blosc

The Compression Process

@ A compression algorithm looks in the dataset for redundancies
and dedups them. The usual outcome is a smaller dataset:

Original

Compressed
dataset dataset
Compression
—
-
Decompression
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Eliminating Data Redundancy

. Blosc: A BLOcking Shuffler & Compressor
The Role Of Compression PyTables & Blosc

The Role of Compression in Data Access

@ Compression has already helped accelerate reading and writing
large datasets from/to disks over the last 10 years.

o It generally takes less time to read/write a small (compressed)
dataset than a larger (uncompressed) one, even taking into
account the (de-)compression times.
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Eliminating Data Redundancy
Blosc: A BLOcking Shuffler & Compressor

The Role Of Compression PyTables & Blosc

The Role of Compression in Data Access

@ Compression has already helped accelerate reading and writing
large datasets from/to disks over the last 10 years.

o It generally takes less time to read/write a small (compressed)
dataset than a larger (uncompressed) one, even taking into
account the (de-)compression times.

Crazy question:

Given the gap between processors and memory speed, could
compression accelerate the transfer from memory to the processor,
also?
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Eliminating Data Redundancy
Blosc: A BLOcking Shuffler & Compressor

The Role Of Compression PyTables & Blosc

Reading Compressed Datasets

Original Compressed

dataset dataset
Memory (RAM) I
Bus Memory +
Decompression -
CPU Cache

Transmission + decompression processes faster than direct transfer?
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Eliminating Data Redundancy
Blosc: A BLOcking Shuffler & Compressor

The Role Of Compression PyTables & Blosc

Writing Compressed Datasets

Original Compressed
dataset dataset

4 Memory (RAM)

T Bus Memory
1

Compression -

CPU Cache

Compression + transmission processes faster than direct transfer?
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Eliminating Data Redundancy
Blosc: A BLOcking Shuffler & Compressor

The Role Of Compression PyTables & Blosc

The Challenge: Faster Memory 1/O by Using Compression?

What we need:
Extremely fast compressors/decompressors.
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Eliminating Data Redundancy
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The Challenge: Faster Memory 1/O by Using Compression?

What we need:
Extremely fast compressors/decompressors.

What we should renounce:

High compression ratios.
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Applications for Fast In-Memory Compression

@ We could store more data in a given amount of RAM.

@ When a large quantity of data needs to be accessed
sequentially, access time could be reduced (if compression is
fast enough).
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Applications for Fast In-Memory Compression

@ We could store more data in a given amount of RAM.

@ When a large quantity of data needs to be accessed
sequentially, access time could be reduced (if compression is
fast enough).

Not good for random access. ..

To get a single word, you would need to uncompress an entire
compressed block.

Francesc Alted Memory-Efficient Computing



Eliminating Data Redundancy
Blosc: A BLOcking Shuffler & Compressor

The Role Of Compression PyTables & Blosc

Applications for Fast In-Memory Compression

@ We could store more data in a given amount of RAM.

@ When a large quantity of data needs to be accessed
sequentially, access time could be reduced (if compression is
fast enough).

Not good for random access. ..

To get a single word, you would need to uncompress an entire
compressed block.

Many algorithms out there have already been blocked: it should be
easy to implement compression for them.
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The Current State of Compressors

@ Generally speaking, current compressors do not yet achieve
speeds that would allow programs to handle compressed
datasets faster than uncompressed data.

@ As CPUs have become faster, the trend has been to shoot for
high compression ratios, and not so much to reach faster
speeds.

@ There are some notable exceptions like LZO, LZF and FastLZ,
which are very fast compressor/decompressors, but they're still
not fast enough to hit our goal.
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The Current State of Compressors

@ Generally speaking, current compressors do not yet achieve
speeds that would allow programs to handle compressed
datasets faster than uncompressed data.

@ As CPUs have become faster, the trend has been to shoot for
high compression ratios, and not so much to reach faster
speeds.

@ There are some notable exceptions like LZO, LZF and FastLZ,
which are very fast compressor/decompressors, but they're still
not fast enough to hit our goal.

We need something better! J
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Outline

© The Role Of Compression In Data Access

@ Blosc: A BLOcking Shuffler & Compressor
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Blosc: a cking, “huffling & “ompression Library

@ Blosc is a new, loss-less compressor for binary data. It's
optimized for speed, not for high compression ratios.
@ It is based on the FastLZ compressor, but with some additional
tweaking:
o It works by splitting the input dataset into blocks that fit well
into the level 1 cache of modern processors.
s It can shuffle bytes very efficiently for improved compression

ratios (using the data type size meta-information).
@ Makes use of SSE2 vector instructions (if available).

@ Free software (MIT license).
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Blocking: Divide and Conquer

Blosc achieves very high speeds by making use of the well-known
blocking technique:

L1 cache

CPU
[—

Blosc container

Binary dataset
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Pros and Cons of Blocking

Compresses/decompresses at L1 cache speeds.

Francesc Alted Memory-Efficient Computing



Eliminating Data Redundancy
Blosc: A BLOcking Shuffler & Compressor

The Role Of Compression PyTables & Blosc

Pros and Cons of Blocking

Compresses/decompresses at L1 cache speeds.

Lesser compression ratio

The block is the maximum extent in which redundant data can be
identified and de-dup’d.
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Shuffling: Improving the Compression Ratio

@ Numerical datasets normally can achieve better compression
ratios by applying a technique called “shuffling” before
compressing.

@ The shuffling algorithm does not actually compress the data; it
rather changes the byte order in the data stream:

1 30 510 25
|01|oo|oo|oo| |1e|oo|oo|oo| |fe|01|oo|oo|

[01]1effe [oofoofox]oe] [oofoofoofes]  [oofoofoofog]

9-by! run
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Outline

© The Role Of Compression In Data Access

@ An Application of Blosc: the PyTables Database
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tables.Expr Calculation Revisited

Now that we have a shiny new compressor library in our tool-set,
let us see how it compares with Zlib and LZO for out-of-core
computations:

‘ Method | Time (s) | Speed-up | Memory (MB) |
numpy.memmap 166 1x 11571
tables.Expr (no compr) 141 1.2x 178
tables.Expr (Zlib) 78 2.1x 180
tables.Expr (LZO) 57 2.9x 180
tables.Expr(Blosc) 41 4.0x 180

Blosc can make a large difference processing very large datasets!
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and In-Memory Datasets

@ Several benchmarks have been conducted in order to analyze
how Blosc performs in comparison with other compressors
when data is in-memory.

@ The benchmarks consist in reading a couple of datasets from
OS filesystem cache, operating upon them and writing the
result to the filesystem cache again.

o Datasets analyzed are synthetic (low entropy, so highly
compressibles) and real-life (medium/high entropy, difficult to
compress well), in both single and double-precision versions.

@ Synthetic datasets do represent important corner use cases:
sparse matrices, regular grids. ..
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The Synthetic Datasets

These were easy to generate:

]0187 ]0187
08 08
%5 02 04 06 05 X %5 02 04 06 05 X
!/
y=x y'=N-—x

Both datasets are vectors with 10 million elements.
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The Role Of Compression

The Real-Life Datasets

(Source: Toby Mathieson / Cellzome)

Both datasets are vectors with 10 million elements.
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The Expression to Be Computed

@ The expression to be computed for the benchmarks is:
r = 3%a - 2xb + 1.1

where “a” and “b" are the datasets chosen that are preloaded
on the filesystem cache , and “r” is the result that will also be
written to filesystem cache too.
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Compressors Used

The next compression libraries have been used:
Zlib: good compression ratios, normal speed.

LZO: normal compression ratios, but very fast (one of the
fastest general-purpose compression libraries I've
seen).

Blosc: low compression ratios, extremely fast.
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Compressors Used

The next compression libraries have been used:
Zlib: good compression ratios, normal speed.

LZO: normal compression ratios, but very fast (one of the
fastest general-purpose compression libraries I've
seen).

Blosc: low compression ratios, extremely fast.

Due to the fact that shuffling improves the compression ratios for
the datasets in this benchmark, it has been activated for all the
cases.
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Benchmark Setup

@ Intel Core2 machine at 3 GHz and 6 MB L2 cache (dual-core)
@ 8 GB of RAM (datasets fit here comfortably)

@ RAID-0 of 4 SATA2 disk @ 7200 RPM

@ SuSE GNU/Linux 11.1 (x86-64)

@ PyTables 2.2 betal

o HDF5 1.8.2

@ NumPy 1.3
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Results for Synthetic Data

Synth data, single precision
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Results for Synthetic Datasets

Synth data, double precision
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Comments for Synthetic Data Benchmarks

@ Blosc compresses much less than LZO or Zlib, but also much
faster. Both behaviours were expected.

@ For this highly compressible data, higher optimization levels
don’t mean slower overall speed.

@ In contrast to the other compressors, Blosc speed is not
affected too much by the single- or double-precision data.
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Comments for Synthetic Data Benchmarks

@ Blosc compresses much less than LZO or Zlib, but also much
faster. Both behaviours were expected.

@ For this highly compressible data, higher optimization levels
don’t mean slower overall speed.

@ In contrast to the other compressors, Blosc speed is not
affected too much by the single- or double-precision data.

This is the first time (that I'm aware of) that a computation made
with compressed data already in RAM (or in the OS filesystem
cache, to be precise) matches the speed of the same computation
on uncompressed data.
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Results for Real Data Scenario

Real data, single precision
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Results for Real Data Scenario

Real data, double precision
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Comments for Real Datasets Benchmarks

@ Blosc still compresses less than LZO or Zlib, but the difference
is less now. Also, Blosc continues to be significantly faster.

@ For real data, higher optimization levels can make an
important difference, both in terms of time and compression
ratio.

@ In this case, Blosc speed is noticeably reduced when data is
double-precision instead of single.
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Comments for Real Datasets Benchmarks

@ Blosc still compresses less than LZO or Zlib, but the difference
is less now. Also, Blosc continues to be significantly faster.

@ For real data, higher optimization levels can make an
important difference, both in terms of time and compression
ratio.

@ In this case, Blosc speed is noticeably reduced when data is
double-precision instead of single.

Blosc cannot match the speed of computations made with
uncompressed real data yet. However, it is just a matter of time
before it reaches this goal (using either newer processors or more
optimized libraries).
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Side Note: a HDF5 Design Issue

Current behaviour (Extra buffer copy)

Original buffer

Decompression . Additional
- —> |Intermediate buffer ﬁ

Memory

Desired behaviour (No extra copy)

Original buffer

- Decompression

Memory
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Side Note: a HDF5 Design Issue

Current behaviour (Extra buffer copy)

Original buffer

Decompression . Additional
- —> |Intermediate buffer ﬁ

Memory

Desired behaviour (No extra copy)

Original buffer

- Decompression

Memory

If we could have avoided the extra buffer copy, the achieved speeds
in previous benchmarks could have been between a 25% and 50%
faster — Blosc can effectively be faster than a regular memcpy (!)
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Summary

@ These days, you should understand the hierarchical memory
model if you want to get decent performance.

@ The hierarchical-aware Blosc compressor offers substantial
performance gains over existing compressors (at the cost of
compression ratio).

@ Do not blindly try to parallelize immediately. Do this as a last
resort!
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More Info

¥ Ulrich Drepper
What Every Programmer Should Know About Memory
RedHat Inc.,2007

[l Francesc Alted
Why Modern CPUs Are Starving and What Can Be Done
about It
Computing in Science and Engineering, March 2010

» Francesc Alted
Blosc: A blocking, shuffling and loss-less compression library
http://blosc.pytables.org
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What's Next

In the following exercises you:

@ Will learn how to optimize the evaluation of arbitrarily complex
expressions.

@ Will experiment with in-memory and out-of-memory
computation paradigms.

@ Will check how compression can be useful in out-of-memory
calculations (and maybe in some in-memory ones too!).

Francesc Alted Memory-Efficient Computing



	Motivation
	The Data Access Issue
	A Bit of (Personal) Computing History
	CPU Starvation and The Hierarchical Memory Model
	Techniques For Fighting CPU Starvation

	The Role Of Compression In Data Access
	Eliminating Data Redundancy
	Blosc: A BLOcking Shuffler & Compressor
	An Application of Blosc: the PyTables Database

	Summary

