
Exercises for Memory-Efficient Computing

In-memory computations: Numexpr as an accelerator of
NumPy expressions
Initially, we are going to see how to optimize the computation of expressions that fit well in main memory.
For the exercises in this sections we will mainly use the poly1.py script.

1. Use script poly1.py to check how much time it takes to evaluate the next polynomial:

y = .25*x**3 + .75*x**2 - 1.5*x - 2

with x in the range [-1, 1], and with 10 millions points.

• Set the what parameter to "numexpr" and take note of the speed-up versus the "numpy" case.
Why do you think the speed-up is so large?

2. The expression below:

y = ((.25*x + .75)*x - 1.5)*x - 2

represents the same polynomial than the original one, but with some interesting side-effects in
efficiency. Repeat the computation for numpy and numexpr and get your own conclusions.

• Why do you think numpy is doing much more efficient with this new expression?

• Why the speed-up in numexpr is not so high in comparison?

• Why numexpr continues to be faster than numpy?

3. The C program poly.c does the same computation than above, but in pure C. Compile it like this:

gcc -O3 -o poly poly.c -lm

and execute it.

• Why do you think it is more efficient than the above approaches?

Out-of-memory computations: numpy.memmap versus
tables.Expr
Now, we are going to make use of the script poly2.py to compute the same problem than above, but
using an out-of-memory paradigm.

Comparing numpy.memmap and tables.Expr approaches
4. Use script poly2.py to study the compute_numpy and compute_tables functions and try to

understand how the different numpy.memmap and tables.Expr paradigms work.

• Compare the times for computing the polynomial via both numpy.memmap and
tables.Expr (set the what variable properly). Why the difference in speed between both
approaches is so large?

• Compare the latter times with the times for the in-memory approach. Why do you think the
out-of-memory paradigm is slower?

• With the out-of-memory approach, try putting the result in-memory. Is the improvement
noticeable?

Playing with compression
5. With the tables.Expr module, play with different compression levels (including 0, i.e. no

compression) for the Blosc compressor.

• Which one compresses better?

• Which one achieves the best compression/time ratio?

• Is this competitive in terms of speed with the non-compressed mode?

6. Compare 'blosc' with other compressors in PyTables, like 'zlib' or 'lzo'.

• Which one compresses better?

• Which one achieves the best compression/time ratio?

Making real "out-of-memory" computations
Of course, the advantage of the out-of-memory approach is that you can still perform your computations
even if they exceed your available memory.

7. Set the number of elements in N to some value that slightly exceeds the amount of the physical
memory in your laptop, but still, less than the virtual memory.

Hint: the working set for this problem is 2*N*size(datatype). As the datatype is a double precision
one, size(datatype)=8. So, for a laptop with 1 GB of main memory, setting N=80 millions is fine.

Warning: For this part, you should make sure that you have some swap space available (check with
free command). If you don't, please create one.

• Which approach (numpy.memmap or tables.Expr) is faster?

8. You will have surely noticed some important jitter while doing measurements in this section.
Uncomment the:

os.system("sync")

line in print_filesize() function and see if measurements are a bit more reproducible.

• Why do you think it is so?

9. With this setup, try with tables.Expr together with Blosc and different compression levels.

• Which compression level gives best speed? Could you explain why?

Beyond virtual memory limits
10. Finally, use a working set slightly larger than your virtual memory. First try tables.Expr and then

numpy.memmap. Spy the memory consumption in another terminal with the "top" utility.

Hint: In this test numpy.memmap will ask for more virtual memory than your system can possibly
deliver, so be ready for seeing your process to be killed by the OS, or even worse, you may end with
your kernel frozen for several minutes. If your are a bit faint of heart, you are not forced to check this
experimentally ;-)

• Why do you think tables.Expr consumes so little memory?

	In-memory computations: Numexpr as an accelerator of NumPy expressions
	Out-of-memory computations: numpy.memmap versus tables.Expr
	Comparing numpy.memmap and tables.Expr approaches
	Playing with compression
	Making real "out-of-memory" computations
	Beyond virtual memory limits

