
Exercises, day 1, morning

Best practices in scientific programming
Software Carpentry, Part I

Valentin Hänel* Rike-Benjamin Schuppner†

Python Winterschool Warsaw, Feb 2010

exercise 1 create your space on the course repository

Learn how to obtain a copy of an existing repository, and add new files to the repository.

i) Check out a copy of the svn repository you will be using in this course:

1 svn co --username=your_username ←↩
https://escher.fuw.edu.pl/svn/python-winterschool/public winterschool

(all on one line). This command will create a local copy of the repository under
the directory winterschool. This is the place where you are going submit your ex-
ercises and work on the various projects with the other students. Notice the option
--username, which needs to be used here, as you’ll be sharing the repository with
your programming partner for the morning.

ii) Create a personal directory:

2 cd winterschool/students
3 mkdir yourname

iii) In the new directory, create a text file called README, and write your name and your
email address into the file.

iv) Add the new directory and the file to the repository, and then commit them. Remember
to provide a meaningful comment when committing the file!

exercise 2 collaborating with svn

Write a story using the svn techniques. Learn to follow the basic svn cycle; use svn to collaboratively
work on a set of files; resolve conflicts that arise from simultaneous changes.

i) Enter the svn repository at winterschool/day1/morning/exercises/stories. In a
text file called metasyntactic_variable.txt1, write a short 2-sentences story. For
example,

Tiziano bought a brand new laptop.
He immediately installed Python.

*valentin.haenel@bccn-berlin.de
†rike.schuppner@bccn-berlin.de
1Please choose whatever comes to your mind.

1



Put each sentence on a new line.

ii) Add and commit the new file to the repository. Wait a moment for everybody else to
finish, then update the repository to get their stories.

iii) Pick a file at random, and expand one of the sentences in two new sub-sentences that
give more details about the story. For example, the new text in has_no_title.txt
could read

Tiziano spilled coffee on his laptop.
He had to replace it with a new one.
He immediately installed Python.

Remember to use one line per sentence.

iv) Update the repository and solve the possible conflicts (choose one of the two conflict-
ing versions, or manually merge the two versions into a new one), then commit the
file.

v) Pick another story and start again from iii). Continue until somebody stops you. Make
sure you stick to the svn basic work cycle.

vi) Have a look at the stories, and use the commands svn blame and svn log to find out
who is responsible for editing them.

exercise 3 bug hunt

Isolate a bug in existing code; debug using agile development practices.

i) Enter the course repository at winterschool/day1/morning/exercises/debug. Copy
the files in that directory into your personal directory (create a new sub-directory for
this exercise) and commit them.

ii) Have a look at the files working.data and not_working.data:

4 cat working.data
5 cat not_working.data

The program convert_to_dict.py reads these files line by line and converts each line
into a dictionary of numbers (look at the docstrings in the code for details). Run the
program on the two data files

6 python convert_to_dict.py working.data
7 python convert_to_dict.py not_working.data

and observe how it fails to convert the data in the second case.

iii) Use pdb to inspect the code and isolate the bug. Hint: Use breakpoints to jump out of
uninteresting loops; look at the local variables with locals().

iv) In the file tests.py there is a simple unit test with some code left out. Change the
code according to the comments.

v) Add more test cases to tests.py, which reproduce the error. Run the test and verify
that it fails.

2



vi) Correct the bug and verify that the new code passes the tests.

vii) Commit everything to the repository. Remember to set a meaningful message.

3



exercise 4 sudoku solver (bonus exercise )

Practice test-driven development; use Python tools to optimize, debug, and document the code.

i) Enter the course repository at winterschool/day1/morning/exercises/sudoku. Copy
the files into your personal directory and commit them.

ii) Look at the test cases in test_sudoku.py. Write a module sudoku.py that makes the
tests pass (this is equivalent to writing a Sudoku solution verifier and a Sudoku
solver). Some notes:

• The file problems.py contains two dictionaries with Sudoku boards and their
solutions. Each board is represented as a 2D list. Write three helper functions,
get_row(grid, nr), get_column(grid, nr), and get_box(grid, nr), that re-
turn the nr-th row, column or box of the Sudoku grid. These will come very
handy. Make sure you write tests for the new functions!

• Start by working on the Sudoku verifier, sudoku.is_solution.

• Use a brute-force approach to solve the Sudoku board in sudoku.solve_sudoku:

Briefly, a brute force program would solve a puzzle by placing the digit ‘1’ in the first cell
and checking if it is allowed to be there. If there are no violations (checking row, column,
and box constraints) then the algorithm advances to the next cell, and places a ‘1’ in that
cell. When checking for violations, it is discovered that the ‘1’ is not allowed, so the value
is advanced to a ‘2’. If a cell is discovered where none of the 9 digits is allowed, then the
algorithm leaves that cell blank and moves back to the previous cell. The value in that
cell is then incremented by one. The algorithm is repeated until the allowed value in the
81st cell is discovered. The construction of 81 numbers is parsed to form the 9×9 solution
matrix. (Excerpt from Wikipedia2)

iii) Profile your code on the 'hard2' problem. Save the profile results in sudoku.profile.
Examine the results and discuss what could be optimized and how (write the response
in optimize.txt).

iv) Check that your code adheres to Python standards using pylint: pylint sudoku.py
Improve your code until the overall pylint score is greater than 7.0.

v) Create documentation for your Sudoku solver: pydoc -w sudoku

5 1 2 8

8 7 2

2 1 8 5

1 4 7 5

4 2

2 6

1 3 6

4 5 1

6 4 1

2http://en.wikipedia.org/wiki/Algorithmics_of_sudoku

4

http://en.wikipedia.org/wiki/Algorithmics_of_sudoku

	1 Create your space on the course repository
	2 Collaborating with SVN
	3 Bug hunt
	4 Sudoku solver

