Best practices in scientific
programming
Software Carpentry, Part I

Rike-Benjamin Schuppner’

Humboldt-Universitat zu Berlin
Bernstein Center for Computational Neuroscience Berlin

Python Winterschool Warsaw, Feb 2010

.0a®
***¢” bcen
berlin

1rike.schuppner@bccn—berlin.de

Outline

Collaborating with VCS
Subversion (SVN)
Unittests

Debugging
pdb

Optimisation strategies / profiling
timeit
cProfile

Python tools for agile programming

» I'll present:
» Python standard ‘batteries included’ tools
» no graphical interface necessary
» magic commands for ipython
» Many tools, based on command line or graphical
interface

» Alternatives and cheat sheets are on the Wiki

v

v

v

v

Version Control Systems

Central repository of files and directories on a server
The repository keeps track of changes in the files
Manipulate versions (compare, revert, merge, ...)
How does this look in ‘real life?

Subversion (SVN)

» Create a new repository
= svnadmin create PATH
! requires security decisions about access to repository, have a
look at the SVN book
» Get alocal copy of a repository
= svn co URL [PATH]

» Checkout a copy of the course SVN repository
= svn co --username=your_username https://escher.
fuw.edu.pl/svn/python-winterschool/public
winterschool

Basic svN cycle

Update your working svh u pdate
copy
;lwl; svh add svn copy
Make changes svh delete svn move

4L

[Examine your changes]

4L

[Merge others’ changes] svnh update
J;AL resolve conflicts, then svn resolved

svn status svn diff svn revert

[Commit your changes] . " . "
svn commit -m "meaningful message

<> Time forademo &=

SVN notes

» SVN cannot merge binary files = don’t commit large
binary files that change often (e. g., results files)

» At each milestone, commit the whole project with a clear
message marking the event

= svh commit -m "submission to Nature"

» There’s more to it:

» Branches, tags, repository administration
» Graphical interfaces: subclipse for Eclipse, TortoiseSVN,

» Distributed VCS: Mercurial, git, Bazaar

Test Suites in python: unittest

» Automated tests are a fundamental part of modern
programming practices

» unittest: standard Python testing library.

What to test?

» Test general routines with specific ones
» Test special or boundary cass

» Test that meaningful error messages are raised upon
corrupt input
» Relevant when wrtiting scientific libraries

1

2

3

4

Anatomy of a TestCase

import unittest
class FirstTestCase(unittest.TestCase):
def testtruisms(self):
"""All methods beginning with “ test ” are
executed"""
self.assertTrue(True)
self.assertFalse(False)

def testequality(self):
"""Docstrings are printed during executions of
the tests in the Eclipse IDE"""
self.assertEqual(l, 1)

if __name__ == '__main__":
unittest.main()

TestCase.assertSomething

assertTrue('Hi'.islower()) => fail

assertFalse('Hi'.islower()) => pass

assertEqual([2, 3], [2, 3]) => pass

assertAlmostEqual(1.125, 1.12, 2) => pass

assertAlmostEqual(1.125, 1.12, 3) => fail

assertRaises(exceptions.IOError, file, 'inexistent', 'r
D) => pass

assertTrue('Hi'.islower(), 'One of the letters is not
lowercase')

Multiple TestCases

import unittest

class FirstTestCase(unittest.TestCase):
def testtruisms(self):
self.assertTrue(True)
self.assertFalse(False)

class SecondTestCase(unittest.TestCase):
def testapproximation(self):
self.assertAlmostEqual(l.1, 1.15, 1)

if __name__ == '__main__":
execute all TestCases in the module
unittest.main(Q)

1

setUp and tearDown

import unittest

class FirstTestCase(unittest.TestCase):
def setUp(self):
"""setUp is called before every test
pass

def tearDown(self):
"""tearDown is called at the end of every test

nnn

pass

.. all tests here ..

4 1f __name__ == "__main__":

15

unittest.main()

<> Time forademo &=

Debugging

The best way to debug is to avoid it

Your test cases should already exclude a big portion of
possible causes

Don't start littering your code with ‘print’ statements
Core ideas in debugging: you can stop the execution of

your application at the bug, look at the state of the
variables, and execute the code step by step

pdb, the Python debugger

» Command-line based debugger

» pdb opens an interactive shell, in which one can interact
with the code

>

>

>

| 4

examine and change value of variables
execute code line by line

set up breakpoints

examine calls stack

Entering the debugger

» Enter at the start of a program, from command line:
» python -m pdb mycode.py

» Enterin a statement or function:
1+ import pdb
> # your code here
3 1f __name__ == '__main__":
4 pdb.runcall(function[, argument, ..])
5 pdb.run(expression)

» Enter at a specific point in the code:

1+ import pdb

» # some code here

3 # the debugger starts here
4 pdb.set_trace()

s # rest of the code

Entering the debugger

» From ipython, when an exception is raised:
» %pdb — preventive
» %debug — post-mortem

<> Time forademo &=

Some general notes to optimisation

» Readable code is usually better than faster code
» Only optimise, if it's absolutely necessary
» Only optimise your bottlenecks

Python code optimisation

» Python is slower than C, but not prohibitively so
» In scientific applications, this difference is even less
noticeable (when using numpy, scipy, ...)

» for basic tasks as fast as Matlab, sometimes faster
» as Matlab, it can easily be extended with C or Fortran
code

» Profiler = Tool that measures where the code spends time

timeit
» precise timing of a function / expression

» test different versions of small amount of code, often
used in interactive Python shell

. from timeit import Timer

s # execute 1 million times, return elapsed time(
sec)

4 Timer("module. functionCargl, arg2)", "import
module").timeit()

¢ # more detailed control of timing

; t = Timer("module.functionCargl, arg2)", "import
module™)

s # make three measurements of timing, repeat 2
million times

o t.repeat(3, 2000000)

<> Time forademo &=

cProfile

» standard Python module to profile an entire application
(profile is an old, slow profiling module)
» Running the profiler from command line:
» python -m cProfile myscript.py
» options -o output_file
» -s sort_mode (calls, cumulative, name, ...)
» from interactive shell / code:

+ import cProfile
> cProfile.run(expression [, "filename.profile"])

cProfile, analysing profiling results

» From interactive shell / code:

» import pstats

> p = pstats.Stats("filename.profile")
3 p.sort_stats(sort_order)

4 p.print_stats()

» Simple graphical description with RunSnakeRun

cProfile, analysing profiling results

Look for a small number of functions that consume most
of the time; those are the ‘only’ parts that you should
optimise
High number of calls per functions

= bad algorithm?

High time per call
=- consider caching
High times, but valid
=- consider using libraries like numpy or rewriting in C

	Collaborating with VCS
	Subversion (SVN)
	Unittests
	Debugging
	pdb

	Optimisation strategies / profiling
	timeit
	cProfile

