
Best practices in scientific programming
Software Carpentry, Part I

Valentin Hänel
valentin.haenel@bccn-berlin.de

Technische Universität Berlin
Bernstein Center for Computational Neuroscience Berlin

Python Winterschool Warsaw, Feb 2010
Slides based on material by Pietro Berkes

1 / 49

Todays Schedule

Morning

Valentin

Agile Methods
Unit Testing
Version Control

Rike

Unit Testing Examples
Subversion
Debugging
Profiling

2 / 49

Todays Schedule

Afternoon

Niko

General Design Principles

Object Oriented Programming in Python

Object Oriented Design Principles

Design Patterns

3 / 49

Motivation

Many scientists write code regularly but few have formally been
trained to do so

Best practices can make a lot of difference

Development methodologies are established in the software
engineering industry

We can learn a lot from them to improve our coding skills

4 / 49

Scenarios

Lone student/scientist

Small team of scientists, working on a common library

Speed of development more important than execution speed

Often need to try out different ideas quickly:

rapid prototyping of a proposed algorithm
re-use/modify existing code

5 / 49

Outline

1 Introduction

2 Agile methods

3 Unit Testing

4 Version Control

5 Additional techniques

6 / 49

What is a Development Methodology

Consist of:

A philosophy that governs the style and approach towards
development

A set of tools and models to support the particular approach

Help answer the following questions:

How far ahead should I plan?

What should I prioritize?

When do I write tests and documentation?

7 / 49

The Waterfall Model, Royce 1970

Requirements

Design

Implementat ion

Testing

Maintenence

8 / 49

Agile Methods

Agile methods emerged during the late 90’s

Generic name for set of more specific paradigms

Set of best practices

Particularly suited for:

small teams (less than 10 people)
unpredictable or rapidly changing requirements

9 / 49

Prominent Features of Agile methods

Minimal planning

Small development iterations

Rely heavily on testing

Promote collaboration and teamwork

Very adaptive

10 / 49

The Basic Agile Workflow

Define Test

Write Simplest
Version of Code

Ensure Test
Passes

Writte Better
Version of Code

11 / 49

Example

Define Test

function my sum should return the sum of a list.

12 / 49

Example

Write Simplest
Version of Code

1 def my_sum(my_list):

2 """ Compute sum of list elements. """
3 answer = 0

4 for item in my_list:

5 answer = answer + item

6 return answer

13 / 49

Example

Ensure Test
Passes

1 >>> my_sum ([1 ,2 ,3])

2 6

14 / 49

Example

Writte Better
Version of Code

1 def my_sum(my_list):

2 """ Compute sum of list elements. """
3 return sum(my_list)

15 / 49

Agile methods

16 / 49

Whats Next

Look at tools to support the agile workflow

Better testing with Unit Tests

Keeping track of changes and collaborating with Version Control

Additional techniques

17 / 49

Outline

1 Introduction

2 Agile methods

3 Unit Testing

4 Version Control

5 Additional techniques

18 / 49

Unit Tests

Definition of a Unit

The smallest testable piece of code

Example: my sum

We wish to automate testing of our units

In python we use the package unittest

19 / 49

Example

1 import unittest

2

3 def my_sum(my_list):

4 """ Compute sum of list elements. """
5 return sum(my_list)

6

7 class Test(unittest.TestCase):

8 def test_my_sum(self):

9 self.assertEqual(my_sum ([1 ,2 ,3]) ,6)

10

11 if __name__ == "__main__":

12 unittest.main()

20 / 49

Running the Example

1 % python example -test2.py

2 .

3 --

4 Ran 1 test in 0.000s

5

6 OK

21 / 49

The Basic Agile Workflow - Reloaded

Define Unit Test

Write Simplest
Version of Unit

Ensure Unit Test
Passes

Writte Better
Version of Unit

22 / 49

Goals

check code works

check design works

catch regression

23 / 49

Benefits

Easier to test the whole, if the units work

Can modify parts, and be sure the rest still works

Provide examples of how to use code

24 / 49

How to Test ?

Test with simple cases, using hard coded solutions

my sum([1,2,3]) == 6

Test special or boundary cases

my sum([]) == 0

Test that meaningful error messages are raised upon corrupt input

my sum([’1’, ’a’])
→ TypeError: unsupported operand type(s) for +: ’int’
and ’str’

25 / 49

What Makes a Good Test?

independent (of each other, and of user input)

repeatable (i.e. deterministic)

self-contained

26 / 49

Stuff Thats Harder to Test

Probabilistic code

Use toy examples as validation

Consider fixing the seed for your pseudo random number generator

Hardware

use mock up software that behaves like the hardware should

Plots

(any creative ideas welcome)

27 / 49

Test Suits

All unit tests are collected into a test suite

Execute the entire test suite with a single command

Can be used to provide reports and statistics

28 / 49

Refactoring

This is what its called when you write a better version of your code.

Re-organisation of your code without changing its function:

remove duplicates by creating functions and methods
increase modularity by breaking large code blocks into units
rename and restructure code to increase readability and reveal intention

Always refactor one step at a time, and use the unit tests to check
code still works

Learn how to use automatic refactoring tools to make your life easier

29 / 49

Dealing with Bugs

Isolate the bug (using a debugger)

Write a unit test to expose the bug

Fix the code, and ensure the test passes

Use the test to catch the bug should it reappear

Debugger

A program to run your code one step at a time, and giving you the ability
to inspect its current state.

30 / 49

Dealing with Bugs

31 / 49

Introducing New Features

Split feature into units

Use the agile workflow

Tests drive the development

Keep the iterations small

32 / 49

Some Last Thoughts

Tests increase the confidence that your code works correctly, not only
for yourself but also for your reviewers

Tests are the only way to trust your code

It might take you a while to get used to the idea, but it will pay off
quite rapidly

Questions?

33 / 49

Outline

1 Introduction

2 Agile methods

3 Unit Testing

4 Version Control

5 Additional techniques

34 / 49

What is Version Control?

Problem 1

”Help my code worked yesterday, but I can’t recall what I changed!”

Problem 2

”We would like to work together, but we don’t know how!”

Version control is a method to track changes in source code

Concurrent editing is possible via merging

35 / 49

Features

Revert to previous versions

Document developer effort

Who changed what, when and why?

Easy collaboration across the globe

36 / 49

Where the Versions are Stored?

Repository

ZazaYarikXenia

repository is located on a server

Developers must connect to this server

37 / 49

Contents of the Repository

Version 22 Version 23 Version 24

Version: 23
Author: Valentin
Date : 07.02.2010
Message: Improve my_sum
Changes: [...]

38 / 49

Basic Version Control Workflow

39 / 49

What Will We Use ?

Many different systems available

We will use the de-facto standard:

40 / 49

Some Last Thoughts

Use version control for anything thats text

Code
Thesis
Letters

We will be using centralised version control, note there exists also
decentralised version control

Again, it might take a while to get used to the idea, but it will pay off
rapidly.

Questions

41 / 49

Outline

1 Introduction

2 Agile methods

3 Unit Testing

4 Version Control

5 Additional techniques

42 / 49

Pair Programming

Two developers, one computer

Two roles: driver and navigator

Driver sits at keyboard

Navigator observes and instructs

Switch roles every so often

43 / 49

Optimization for Speed

Readable code is usually better than fast code

Only optimize if its absolutely necessary

Only optimize your bottlenecks

...and identify these using a profiler, for example cprofile

Profiler

A tool to measure and provide statistics on the execution time of code.

44 / 49

Prototyping

If you are unsure how to implement something, write a prototype

Hack together a proof of concept quickly

No tests, no documentation

Use this to explore the feasability of your idea

When you are ready, scrap the prototype and start with the unit tests

45 / 49

Coding Style

Give your variables meaningful names

Adhere to coding conventions

OR use a consistent style

Use automated tools to ensure adherence: pylint

46 / 49

Documentation

Minimum requirement: at least a docstring

For a library document arguments and return objects

Use tools to automatically generated website from code: pydoc

47 / 49

Results

Every scientific result (especially if important) should be
independently reproduced at least internally before publication.
(German Research Council 1999)

Increasing pressure to make the source used in publications available

With unit tested code you need not be embarrassed to publish your
code

Using version control allows you to share and collaborate easily

48 / 49

The Last Slide

Open source tools used to make this presentation:

wiki2beamer
LATEXbeamer
dia

Questions ?

49 / 49

	Introduction
	Agile methods
	Unit Testing
	Version Control
	Additional techniques

