
Agile development cheat sheet

Agile development work cycle

1. Write tests that define your application
2. Write simplest version of the code
3. Run the tests and debug until all tests pass
4. Optimize only at this point
5. Go back to 3 until necessary

Reacting to bugs

1. Use debugger to isolate bug
2. Add test case that reproduces bug to test suite
3. Correct the bug
4. Check that all tests pass

Implementing new features

1. Write tests for new features
2. Write new features in the simplest possible way

(follow the agile development work cycle)
3. Refactor

SVN cheatsheet

Check-out an SVN repository

 svn co URL [PATH]

Basic work cycle

1. Update your working copy:
svn update

2. Make changes

svn add

svn delete

svn copy

svn move

3. Examine your changes
svn status
svn diff

svn revert

4. Merge others’ changes into your working copy
svn update

svn resolved

5. Commit your changes
svn commit –m”meaningful message”

Miscellaneous tools cheatsheet

pydoc

pydoc module_name text output
pydoc – w module_name html output

pydoc –g open graphical interface

pylint

pylint display very long list with all options

pylint filename.py check file for consistency with standards
pylint module check module

unittest cheatsheet

Basic structure of a test suite

import unittest

class FirstTestCase(unittest.TestCase):

 def setUp(self):

 """setUp is called before every test"""

 pass

 def tearDown(self):

 """tearDown is called at the end of every test"""

 pass

 def testtruisms(self):

 """All methods beginning with ‘test’ are executed"""

 self.assertTrue(True)

 self.assertFalse(False)

class SecondTestCase(unittest.TestCase):

 def testapproximation(self):

 self.assertAlmostEqual(1.1, 1.15, 1)

if __name__ == '__main__':

 # run all TestCase's in this module

 unittest.main()

Assert methods in unittest.TestCase

Most assert methods accept an optional msg argument, which is used as an explanation for the error.

assert_(expr[, msg)

assertTrue(expr[, msg])
Fail if expr is False

assertFalse(expr[, msg]) Fail if expr is True

assertEqual(first, second[, msg]) Fail if first is not equal to second

assertNotEqual(first, second[, msg]) Fail if first is equal to second

assertAlmostEqual(first, second

 [, places[, msg]])
Fail if first is equal to second up to the
decimal place indicated by places (default: 7)

assertNotAlmostEqual(first, second

 [, places[, msg]])
Fail if first is not equal to second up to the
decimal place indicated by places (default: 7)

assertRaises(exception, callable, ...) Fail if the function callable does not raise an
exception of class exception. If additional
positional or keyword arguments are given,
they are passed to callable.

fail([msg]) Always fail

cProfile cheatsheet

Invoking the profiler

From the command line:
python -m cProfile [-o output_file] [-s sort_order] myscript.py

sort_order is one of ‘calls’, ‘cumulative’, ‘name’, …
(see cProfile documentation for more)

From interactive shell / code:

import cProfile

cProfile.run(expression[, "filename.profile"])

Looking at saved statistics

From interactive shell / code:
import pstat

p = pstat.Stats("filename.profile")

p.sort_stats(sort_order)

p.print_stats()

Simple graphical description (needs RunSnakeRun):

runsnake filename.profile

timeit cheatsheet
Execute expression one million times, return elapsed time in seconds:

from timeit import Timer

Timer("module.function(arg1, arg2)", "import module").timeit()

For a more precise control of timing, use the repeat method; it returns a list of repeated
measurements, in seconds:

t = Timer("module.function(arg1, arg2)", "import module")
make 3 measurements of timing, repeat 2 million times

t.repeat(3, 2000000)

pdb cheatsheet

Invoking the debugger

Enter at the start of a program, from the command line:
python –m pdb mycode.py

Enter in a statement or function:

import pdb

your code here

if __name__ == '__main__':

 # start debugger at the beginning of a function

 pdb.runcall(function[, argument, ...])

 # execute an expression (string) under the debugger

 pdb.run(expression)

Enter at a specific point in the code:

import pdb

some code here

the debugger starts here

pdb.set_trace()

rest of the code

In ipython:
%pdb enter the debugger automatically after an exception is raised
%debug enter the debugger post-mortem where the exception was thrown

Debugger commands

h (help) [command] print help about command
n (next) execute current line of code, go to next line
c (continue) continue executing the program until next

breakpoint, exception, or end of the program
s (step into) execute current line of code; if a function is

called, follow execution inside the function
l (list) print code around the current line
w (where) show a trace of the function call that led to the

current line
p (print) print the value of a variable
q (quit) leave the debugger
b (break) [lineno | function[, condition]]

set a breakpoint at a given line number or
function, stop execution there if condition is
fulfilled

cl (clear) clear a breakpoint
! (execute) execute a python command
<enter> repeat last command

