
The Pelita contest
(a brief introduction)

Advanced Scientific Programming in Python
#aspp2017

The Pelita contest
(a brief introduction)

Rike-Benjamin Schuppner
Institute for Theoretical Biologie | HU Berlin

rikebs@debilski.de // debilski.de // @debilski

mailto:rikebs@debilski.de?subject=

In short

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

A maze

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Moving around

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Enemy bots

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://img.timeinc.net/time/photoessays/2008/top10_1950s/top10_1950s_them.jpg

Attack

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Pelita

Before you ask

•Pelita
•Actor-based Toolkit for Interactive

Language Education in Python
•‘Pill-eater’
•Created 2011–2012 especially for the

summer school
•(Idea from John DeNero and Dan Klein, UC

Berkeley¹)

¹ http://www.denero.org/content/pubs/eaai10_denero_pacman.pdf

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Authors

• git shortlog -sn 
Rike-Benjamin Schuppner 
Valentin Haenel  
Tiziano Zito  
Zbigniew Jędrzejewski-Szmek 
Bastian Venthur 
Pietro Berkes 
Jakob Jordan 
Nicola Chiapolini 
Pauli Virtanen 
abject 
DoriekeG 
Anna Chabuda  
Sasza Kijek 
Francesc Alted 
Christian Steigies 
Bartosz Telenczuk 
Ola Pidde

Overview

! Each Team owns two Bots
! Each Bot is controlled by a Player
! Harvester or Destroyer Bots
! Bots are Destroyers in homezone
! Harvesters in enemy’s homezone
! Game ends when all food pellets are eaten

Overview

•Each Team owns two Bots

Bots for team 1

Bots for team 0

Overview

•Each Team owns two Bots
•Each Bot is controlled by a Player

Bots for team 0

Bots for team 1

Overview

•Each Team owns two Bots
•Each Bot is controlled by a Player
•Harvester or Destroyer Bots

Overview

•Each Team owns two Bots
•Each Bot is controlled by a Player
•Harvester or Destroyer Bots
•Bots are Destroyers in homezone
•Harvesters in enemy’s homezone
•Game ends when all food pellets are eaten

The rules

http://filmscoreclicktrack.com/2013/01/the-ten-commandments-of-film-music/

http://filmscoreclicktrack.com/2013/01/the-ten-commandments-of-film-music/

The rules

•Eating: When a Bot eats a food pellet, the food is permanently removed
and one point is scored for that Bot’s team.

•Timeout: Each Player only has 3 seconds to return a valid move. If it
doesn’t, a random move is executed. (All later return values are
discarded.)  
5 timeouts and you’re out!

•Eating another Bot: When a Bot is eaten by an opposing destroyer, it
returns to its starting position (as a harvester). 5 points are awarded for
eating an opponent.

•Winning: A game ends when either one team eats all of the opponents’ food
pellets, or the team with more points after 300 rounds.

•Observations: Bots can only observe an opponent’s exact position, if they
or their teammate are within 5 squares of the opponent bot. If they are
further away, the opponent’s positions are noised.

Controlling the bots

https://drafthouse.com/show/pi-on-pi-day

https://drafthouse.com/show/pi-on-pi-day

• Careful: Invalid return values of get_move result in a random move.

from pelita.datamodel import east
from pelita.player import AbstractPlayer

class UnidirectionalPlayer(AbstractPlayer):
 def get_move(self):
 return east

class DrunkPlayer(AbstractPlayer):
 def get_move(self):
 directions = self.legal_moves
 random_dir = self.rnd.choice(directions)
 return random_dir

My first players

API examples

•In your get_move method, information about the current universe and food situation is available. See the
documentation for more details.

•self.current_pos 
 Where am I?

•self.me  
 Which bot am I controlling?

•self.enemy_bots  
 Who and where are the other bots?

•self.enemy_food  
 Which are the positions of the food pellets?

•self.current_uni 
Retrieve the universe you live in.

•self.current_uni.maze  
How does my world look like?

•self.legal_moves 
Where can I go?

•self.me.is_destroyer  
Am I dangerous?

Building a team

•A team consists of two players (and a
name)

•Create it using the SimpleTeam class
•SimpleTeam("Magnificent Team", GoodPlayer(),

RemarkablePlayer())

•Export your team using the factory
function
• def factory(): 

 return SimpleTeam(…)  

Demo bots

•In pelita/player directory
•There are hidden bots on our servers
•We tell you how to use them when it’s

time

Demo Time

•Now, let’s build an example player

Debugging

http://www.moviemail.com/images/large/computer-chess-35397_1.jpg

http://www.moviemail.com/images/large/computer-chess-35397_1.jpg

Debugging

• Use a pre-defined DebuggablePlayer to explore the
API

• class DebuggablePlayer(AbstractPlayer): 
 def get_move(self):  
 direction = datamodel.stop  
 pdb.set_trace()  
 return direction

• pelita --no-timeout DebuggablePlayer
• (Pdb) p self.me

http://self.me

Testing

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Testing

•Two ways to test your Players
•first: Simply run the game and test by

watching
•$ pelita MyTeam EnemyTeam

•second: Write proper tests and test by
testing
•Example in the template

Tournament

http://magiaeimagem.files.wordpress.com/2010/02/ingmar-bergman-the-seventh-seal.jpg

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Tournament

•Two stages mode
•first: all-against-all (round robin)
•then: knockout
•bonus: 

tutor-humiliation round

Tournament

•Clone the group repository
•It contains a module in team/. (Uses __init__.py)
•Exports a ‘factory’ method: 
 
 def factory(): 
 return SimpleTeam("The Winners", MyPlayer(),
MyPlayer())

•Run it as  
 pelita groupN/team

•Additionally contains util and testing repositories
•Test with py.test or simply run ‘make test’

Notes on writing

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Notes on writing

•Mazes don’t have dead-ends
•Hard to catch another bot which outruns

you
•We’d like to see bots which combine their

powers and attack from two sides

Notes on writing

•Think about shortest-path algorithms
•Keep track of opponents
•Investigate communication between the

Players
•Re-use your code
•Think about working in a team

Notes on writing

•Use the internal random number generator:
•instead of
•random.choice

•you use
•self.rnd.choice

•(more stable)

Notes on writing

•The match environment:
•numpy is installed
•also: pylint (just so you know)
•additional packages may or may not be

negotiable

Getting ready

•Clone the pelita and group repos: 
git clone https://github.com/ASPP/pelita.git 
git clone https://github.com/ASPP/groupN.git

•Install pelita: 
pip install git+https://github.com/ASPP/pelita.git

•Run a simple demo game:  
pelita groupN/team

•For help: 
pelita --help

•See the Pelita documentation:  
https://ASPP.github.io/pelita

•Questions? Ask us.
•Vent your frustration: #aspp2017

https://ASPP.github.io/pelita

Repo closes

http://25.media.tumblr.com/tumblr_m3vmn8RTTH1qathv6o1_500.png

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Repo closes

Saturday, 5pm.
http://25.media.tumblr.com/tumblr_m3vmn8RTTH1qathv6o1_500.png

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Movie stills

• ‘Them’ (1954, dir. Gordon Douglas)
• ‘The Ten Commandments’ (1956, dir. Cecil B.

DeMille)
• ‘Det sjunde inseglet’ (1957, dir. Ingmar

Bergman)
• ‘Smultronstället’ (1957, dir. Ingmar Bergman)
• ‘The Shining’ (1980, dir. Stanley Kubrick)
• ‘Pi’ (1998, dir. Darren Aronofsky)

• ‘Computer Chess’ (2013, dir. Andrew Bujalski)

http://en.wikipedia.org/wiki/Gordon_Douglas_(director)
http://de.wikipedia.org/wiki/Cecil_B._DeMille
http://de.wikipedia.org/wiki/Cecil_B._DeMille
http://www.imdb.com/name/nm0029049/?ref_=tt_ov_dr

