
Managing software and
packaging in Python

Aina Frau-Pascual
ASPP summer school 2017

Index
1. Organize your code into libraries and modules that can
 be imported and reused

2. Create a Python package that can be installed with pip

3. Distribute your package

4. Upload it to PyPI

5. Versioning and tagging in git

1) Organize your code into libraries and modules that can be
imported and reused

Minimal structure:

example/
 __init__.py
 example_file.py

example_file.py > contains a function example_fun()

example/
 __init__.py
 example_file.py

1) Organize your code into libraries and modules that can be
imported and reused

LICENSE.md: Open source license MIT, Apache 2.0, and
GPLv3... https://choosealicense.com/, https://opensource.guide/legal/

README.md: explain how to use your project...

CONTRIBUTING.md: Contributing guidelines

https://choosealicense.com/
https://opensource.guide/legal/

It is good to have a .gitignore file containing the files
that we do not want to commit to git:

1) Organize your code into libraries and modules that can be
imported and reused

Compiled python modules.
*.pyc

Setuptools distribution folder.
/dist/

Python egg metadata, regenerated
from source files by setuptools.
/*.egg-info

 Exercise:

a) Create your own package:
i) Remember to add your __init__.py

2) Create a Python package that can be installed with pip
If you want to install it with pip you need a setup.py file.

The directory structure should look like

If you want to compile it with pip you need a setup.py file.

The directory structure should look like

example/

 example/

 __init__.py

 setup.py

And setup.py should look like:

from setuptools import setup

setup(name='example',

 version='0.1',

 description='The ultimate example',

 url='http://github.com/author/example',

 author='Author Name',

 author_email='author@example.com',

 license='MIT',

 packages=['example'],

 zip_safe=False)

example/
 example/
 __init__.py
 example_file.py
 setup.py

2) Create a Python package that can be installed with pip
And setup.py should look like:

from setuptools import setup

setup(name='example',
 version='0.1',
 description='The ultimate example',
 url='http://github.com/author/example',
 author='Author Name',
 author_email='author@example.com',
 license='MIT',
 packages=['example'],
 zip_safe=False)

We can install the package locally (for use on our system)

> pip install -e .

with “-e” the installation is "editable".

Now you can import it from anywhere in the system

2) Create a Python package that can be installed with pip

 pip install -e .

 Exercise:

a) Create your own package:
i) Remember to add your __init__.py

b) Make it pip installable
i) Create your setup.py
ii) Install the package locally

3) Distribute your package
Distribution Package: versioned archive file that contains
Python packages, modules, and other resource files that are
used to distribute a Release.

Repositories: PyPI and conda-forge

◦ The Python Package Index (PyPI): manage with pip

◦ Conda-forge: manage with conda

Distribution formats: source vs built

◦ Source Distribution (or “sdist”): requires a build step
before it can be installed:

▪ setuptools: for creating and installing distributions. Enhancement to
sdist.

◦ Built Distribution: only needs to be moved to the
correct location on the target system, to be
installed.

▪ Wheel: Introduced by PEP 427. Currently supported by pip.

▪ Egg: Introduced by setuptools. Being replaced by Wheel.

3) Distribute your package

4) Upload/publish it to PyPI: using twine
Register in https://pypi.org/

https://testpypi.python.org/pypi

Create some distributions in the normal way

Upload with twine

(*) if we do not give a --repository-url, the default is PyPI

Note: If your project is python 2 and 3 compatible you can
create a universal wheel distribution. Create a file called
setup.cfg with the following content and upload your package.

[bdist_wheel]

universal = 1

or use the --universal flag > python setup.py sdist
bdist_wheel --universal

Note 2: If your project has optional C extensions, it is
recommended not to publish a universal wheel, because pip will
prefer the wheel over a source installation. bdist_wheel will
detect that the code is not pure Python, and build a wheel
that’s named such that it’s only usable on the platform that it
was built on.

Note 3: PyPI currently allows uploading platform-specific
wheels for Windows, macOS and Linux. It is useful to create
wheels for these platforms, as it avoids the need for your
users to compile the package when installing. You will need to
have access to the platform you are building for. Use
--plat-name flag for this.

Now you can install the package with

> pip install example

or with wheels

> pip install –use-wheel example

> pip install example.whl

twine upload --repository-url
https://test.pypi.org/legacy/ dist/*

pip install wheel
python setup.py sdist bdist_wheel

https://test.pypi.org/legacy/

4) Upload/publish it to PyPI: Install from PyPI
Now you can install the package with

 (*) if we do not give a --index-url, the default is PyPI

or with wheels

pip install --index-url
https://test.pypi.org/simple/ example

pip install –use-wheel example
pip install example.whl

https://test.pypi.org/simple/

 Exercise:

a) Create your own package:
i) Remember to add your __init__.py

b) Make it pip installable
i) Create your setup.py
ii) Install the package locally

c) Upload to PyPI
i) Register to test-PyPI
ii) Upload your package

5) Proper versioning and tagging in git
Git has the ability to tag specific points in history as
being important: release points, publications…

git tag → lists tags in alphabetic order

git tag -l "v1.8.5*" → lists specific tags

◦ lightweight tag: pointer to a specific commit.

 > git tag v1.4-lw

◦ Annotated tags: stored as full objects in the Git database. They’re
checksummed; contain the tagger name, email, and date; have a tagging
message; and can be signed and verified with GNU Privacy Guard (GPG).

 > git tag -a v1.4 -m "my version 1.4"

 To see the existing tags: > git show v1.2

By default, the git push command doesn’t transfer tags to
remote servers. You will have to explicitly push tags:

> git push origin v1.5

or many at once: > git push origin --tags

You can also checkout tags: > git checkout -b version2
v2.0.0

 or tag past commits specifying the commit checksum (or
part of it):

 > git tag -a v1.2 9fceb02

It can also be done through github's web interface:

https://stackoverflow.com/questions/18216991/create-a-tag-i
n-github-repository

https://softwareengineering.stackexchange.com/questions
/255404/how-to-use-github-branches-and-automatic-releases-f
or-version-management

� Choosing a version number for your tag

https://packaging.python.org/tutorials/distributing-package
s/#choosing-a-versioning-scheme

There are different ways of indicating versions. The
semantic versioning is the preferred:
MAJOR.MINOR.MAINTENANCE numbering scheme

◦ MAJOR version when they make incompatible API changes

◦ MINOR version when they add functionality in a backwards-compatible
manner, and

◦ MAINTENANCE version when they make backwards-compatible bug fixes.

Other versioning schemes: data-based (YEAR.MONTH), serial
(single number increased every release), hybrid scheme
combining both.

https://stackoverflow.com/questions/18216991/create-a-tag-in-github-repository
https://stackoverflow.com/questions/18216991/create-a-tag-in-github-repository
https://softwareengineering.stackexchange.com/questions/255404/how-to-use-github-branches-and-automatic-releases-for-version-management
https://softwareengineering.stackexchange.com/questions/255404/how-to-use-github-branches-and-automatic-releases-for-version-management
https://softwareengineering.stackexchange.com/questions/255404/how-to-use-github-branches-and-automatic-releases-for-version-management
https://packaging.python.org/tutorials/distributing-packages/#choosing-a-versioning-scheme
https://packaging.python.org/tutorials/distributing-packages/#choosing-a-versioning-scheme

5) Proper versioning and tagging in git

git tag v1.4-lw

git tag -a v1.4 -m "my tag"

git tag -a v1.2 9fceb02

git tag

git tag -l "v1.8.5*"

lightweight tag: pointer to a
specific commit.

Annotated tags: stored as full
objects in the Git database.

To tag past commits specifying the
commit checksum (or part of it)

lists tags in alphabetic order

lists specific tags

Git has the ability to tag specific points in history as
being important: release points, publications…

5) Proper versioning and tagging in git

git show v1.2

git push origin v1.5

git push origin --tags

git checkout -b version2 v2.0.0

git fetch

To see the existing tags

To push tags

or many at once

To checkout tags

To fetch tags created
from github

5) Proper versioning and tagging in git

git tag v2017.08

git tag v1.4.1

git tag NI-17/08/30-v1

git tag jon

Date

Release

Publication

Any name

How can I tag them?

 Exercise:

a) Create your own package:
i) Remember to add your __init__.py

b) Make it pip installable
i) Create your setup.py
ii) Install the package locally

c) Upload to PyPI
i) Register to test-PyPI
ii) Upload your package

d) Commit changes to git and add a tag

Any questions?

Some sites for extended information:

 https://github.com/pypa/sampleproject

 https://python-packaging.readthedocs.io

 https://packaging.python.org/

https://github.com/pypa/sampleproject
https://python-packaging.readthedocs.io
https://packaging.python.org/

0.A) Upload to conda-forge to be installed with conda

Create recipe for a new package

● Fork conda-forge/staged-recipes
● Create new branch and a new folder in /recipes

○ Example recipe: staged-recipes/recipes/example/
● Create recipe from staged-recipes/recipes/example/
● Make a pull request
● Your package will be uploaded to conda-forge when the PR

is merged

0.B) Environments: virtualenv and conda
virtualenv is a tool to create isolated Python environments.

You can also create enviroments with conda

pip install virtualenv
virtualenv my_env
source my_env/bin/activate
deactivate

conda create -n myenv python=3.4
conda install -n myenv scipy
source activate my_env
source deactivate

