
Tools to efficiently build scientific code
Mostly testing, some profiling, a little debugging

Pietro Berkes, Twitter Cortex

@masterbaboon
#aspp2016

You as the Master of Research

You start a new project and identify a number of possible leads.

You quickly develop a prototype of the most promising ones;
once a prototype is finished, you can confidently decide
whether that lead is a dead end, or worth pursuing.

Once you find an idea that is worth spending energy on, you take
the prototype and easily re-organize it and optimize it so
that it scales up to the full size of your problem.

As expected, the scaled up experiment delivers good results
and your next paper is under way.

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Reaching Enlightenment
}  How do we get to the blessed state of confidence and

efficiency?

}  Being a Python expert is not sufficient, good programming
practices make a big difference

}  We can learn a lot from the development methods developed
for commercial and open source software

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Warm-up project
}  Write a function that finds the position of local maxima in a

list of numbers

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Warm-up project
}  Write a function that finds the position of local maxima in a

list of numbers

}  Check your solution with these inputs:
}  Input: [1, 4, -5, 0, 2, 1] Expected result: [1, 4]
}  Input: [-1, -1, 0, -1] Expected result: [2]
}  Input: [4, 2, 1, 3, 1, 5] Expected result: [0, 3, 5]
}  Input: [1, 2, 2, 1] Expected result: [1] (or [2], or [1, 2])

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Outline
}  The agile programming cycle

}  Testing scientific code

}  Profiling and optimization

}  Debugging

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Before we start
}  Clone the repository with the material for this class:
https://github.com/ASPP/testing_debugging_profiling.git

Pietro Berkes, Sept 2016 Testing, debugging, profiling

The agile development cycle

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Pick your next feature

Write tests
to check that feature works

Write simplest code
that makes tests pass

Run tests and debug
until all tests pass

Refactor and optimize
only if necessary

Python tools for agile development

py.test

pdb

timeit
cProfile
line_profiler

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Pick your next feature

Write tests
to check that feature works

Write simplest code
that makes tests pass

Run tests and debug
until all tests pass

Refactor and optimize
only if necessary

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Testing scientific code

The agile development cycle

py.test

pdb

timeit
cProfile
line_profiler

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Pick your next feature

Write tests
to check that feature works

Write simplest code
that makes tests pass

Run tests and debug
until all tests pass

Refactor and optimize
only if necessary

Why write tests?
}  Confidence:

}  Tests make you trust your code
}  You will know when a result is negative because the approach is

wrong, and when there is a bug

}  Correctness is main requirement for scientific code
}  You must have a strategy to ensure correctness

Testing, debugging, profiling Pietro Berkes, Sept 2016

The unfortunate story of Geoffrey Chang

Testing, debugging, profiling

Retractions due to software bugs

Retractions due to software bugs
Science, Dec 2006: 5 high-profile retractions (3x Science, PNAS, J. Mol. Biol.) because
”an in-house data reduction program introduced a change in sign for anomalous
differences”

Pietro Berkes, Sept 2016

Meanwhile on Wall Street…

Testing, debugging, profiling

NYT, 2 August 2012

Source: Google Finance

Pietro Berkes, Sept 2016

Meanwhile on Wall Street…

Testing, debugging, profiling

NYT, 2 August 2012

Source: Google Finance

Pietro Berkes, Sept 2016

… but it
worked on my

machine!

Effect of software bugs in science

Testing, debugging, profiling

fre
qu

en
cy

bug severity

oops, wrong
labels!

need to send
errata corrige

end of career

Pietro Berkes, Sept 2016

Testing with Python
}  Tests are automated:

}  Write test suite in parallel with your code
}  External software runs the tests and provides reports and

statistics

============================ test session starts ================================!
platform darwin -- Python 3.5.2, pytest-2.9.2, py-1.4.31, pluggy-0.3.1 -- /Users/
pberkes/miniconda3/envs/gnode/bin/python !
cachedir: .cache !
rootdir: /Users/pberkes/o/pyschool/testing_debugging_profiling/hands_on/
pyanno_voting_solution, inifile: !
collected 4 items !
!
pyanno/tests/test_voting.py::test_labels_count PASSED!
pyanno/tests/test_voting.py::test_majority_vote PASSED!
pyanno/tests/test_voting.py::test_majority_vote_empty_item PASSED!
pyanno/tests/test_voting.py::test_labels_frequency PASSED!
========================= 4 passed in 0.23 seconds ==============================!

Testing, debugging, profiling Pietro Berkes, Sept 2016

Hands-on!
}  Go to hands_on/pyanno_voting

}  Execute the tests:
py.test

Pietro Berkes, Sept 2016 Testing, debugging, profiling

How to run tests

Testing, debugging, profiling

}  1) Discover all tests in all subdirectories
py.test -v

}  2) Execute all tests in one module
py.test -v pyanno/tests/test_voting.py

}  3) Execute one single test
py.test –v test_voting.py::test_majority_vote

Pietro Berkes, Sept 2016

Test suites in Python with py.test
}  Writing tests with py.test is simple:

}  Each test is a function whose name begins by “test_”

}  Each test tests one feature in your code, and checks that it
behaves correctly using “assertions”. An exception is raised if it
does not work as expected.

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Possibly your first test file
}  Create a new file, test_something.py:

}  Save it, and execute the tests

Pietro Berkes, Sept 2016 Testing, debugging, profiling

def test_arithmetic():
 assert 1 == 1
 assert 2 * 3 == 6

def test_len_list():
 lst = ['a', 'b', 'c']
 assert len(lst) == 3

 
 

Assertions

}  assert statements check that some condition is met, and
raise an exception otherwise

}  Check that statement is true/false:
assert 'Hi'.islower() => fail
assert not 'Hi'.islower() => pass

}  Check that two objects are equal:
assert 2 + 1 == 3 => pass
assert [2] + [1] == [2, 1] => pass
assert 'a' + 'b' != 'ab' => fail

}  assert can be used to compare all sorts of objects, and
py.test will take care of producing an approriate error message

Testing, debugging, profiling Pietro Berkes, Sept 2016

Hands-on!
}  Add a new test to test_something.py:

test that 1+2 is 3

}  Execute the tests

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Hands-on!
}  Add a new test to test_something.py:

test that 1+2 is 3

}  Execute the tests

}  Now test that 1.1 + 2.2 is 3.3

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Floating point equality
}  Real numbers are represented approximately as “floating

point” numbers. When developing numerical code, we have to
allow for approximation errors.

}  Check that two numbers are approximately equal:
from math import isclose
def test_floating_point_math():
 assert isclose(1.1 + 2.2, 3.3) => pass

}  abs_tol controls the absolute tolerance:
assert isclose(1.121, 1.2, abs_tol=1e-1) => pass
assert isclose(1.121, 1.2, abs_tol=1e-2) => fail

}  rel_tol controls the relative tolerance:
assert isclose(120.1, 121.4, rel_tol=1e-1) => pass
assert isclose(120.4, 121.4, rel_tol=1e-2) => fail

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Hands-on!
}  One more equality test: check that the sum of these two

NumPy arrays:
x = numpy.array([1, 1])
y = numpy.array([2, 2])
is equal to
z = numpy.array([3, 3])

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Testing with NumPy arrays

Pietro Berkes, Sept 2016 Testing, debugging, profiling

def test_numpy_equality():
 x = numpy.array([1, 1])
 y = numpy.array([2, 2])
 z = numpy.array([3, 3])
 assert x + y == z

__________________________________ test_numpy_equality __________________________________!
!
 def test_numpy_equality():!
 x = numpy.array([1, 1])!
 y = numpy.array([2, 2])!
 z = numpy.array([3, 3])!
> assert x + y == z!
E ValueError: The truth value of an array with more than one element is ambiguous.
Use a.any() or a.all()!
!
code.py:47: ValueError !

Testing with numpy arrays
}  numpy.testing defines appropriate functions:
assert_array_equal(x, y)
assert_array_almost_equal(x, 55 y, decimal=6)

}  If you need to check more complex conditions:
}  numpy.all(x): returns True if all elements of x are true

numpy.any(x): returns True is any of the elements of x is true
numpy.allclose(x, y, rtol=1e-05, atol=1e-08): returns True if
two arrays are element-wise equal within a tolerance

}  combine with logical_and, logical_or, logical_not:
test that all elements of x are between 0 and 1
assert all(logical_and(x > 0.0, x < 1.0))

Testing, debugging, profiling Pietro Berkes, Sept 2016

Hands-on!
}  In voting , there is an empty function, labels_frequency.

Write a test for it, then an implementation.

Pietro Berkes, Sept 2016 Testing, debugging, profiling

def labels_frequency(annotations, nclasses):
 """Compute the total frequency of labels in observed annotations.

 Example:
 >>> labels_frequency([[1, 1, 2], [-1, 1, 2]], 4)
 array([0. , 0.6, 0.4, 0.])

 Arguments

 annotations : array-like object, shape = (n_items, n_annotators)
 annotations[i,j] is the annotation made by annotator j on item i
 nclasses : int
 Number of label classes in `annotations`

 Returns

 freq : ndarray, shape = (n_classes,)
 freq[k] is the frequency of elements of class k in `annotations`, i.e.
 their count over the number of total of observed (non-missing) elements
 """

Testing error control

Testing, debugging, profiling

}  Check that an exception is raised:

from py.test import raises
def test_raises():
 with raises(SomeException):
 do_something()
 do_something_else()

}  For example:

with raises(ValueError):
 int('XYZ’)

passes, because

int('XYZ’)
ValueError: invalid literal for int() with base 10: 'XYZ'

Pietro Berkes, Sept 2016

Testing error control
}  Use the most specific exception class, or the test may pass

because of collateral damage:

 # Test that file "None" cannot be opened.
 with raises(IOError):
 open(None, 'r')

as expected, but

 with raises(Exception):
 open(None, 'r’)

Pietro Berkes, Sept 2016 Testing, debugging, profiling

=> fail

=> pass

Hands-on!
}  Have a look at the docstring of labels_count :

It raises an error if there are no valid observations, but that’s
not tested!

}  Add a test checking that the function raises an error if:
1) We pass a list of invalid annotations (all missing values)
2) We pass an empty list of annotations

Pietro Berkes, Sept 2016 Testing, debugging, profiling

How to test like a pro

Testing, debugging, profiling

}  What does a good test looks like?

}  What should I test?

}  Anything specific to scientific code?

}  At first, testing is awkward:
1) Where do I begin?
2) What do I write in the test?
3)  It’s too much effort, it’s slowing me down!

Pietro Berkes, Sept 2016

Basic structure of test

Testing, debugging, profiling

}  A good test is divided in three parts:
}  Given: Put your system in the right state for testing

}  Create data, initialize parameters, define constants…

}  When: Execute the feature that you are testing

}  Typically one or two lines of code

}  Then: Compare outcomes with the expected ones
}  Define the expected result of the test
}  Set of assertions that check that the new state of your system matches

your expectations

Pietro Berkes, Sept 2016

Test simple but general cases
}  Start with simple, general case

}  Take a realistic scenario for your code, try to reduce it to a simple example

}  Tests for ‘lower’ method of strings

def test_lower():
 # Given
 string = 'HeLlO wOrld'
 expected = 'hello world'

 # When
 output = string.lower()

 # Then
 assert output == expected

Testing, debugging, profiling Pietro Berkes, Sept 2016

Test special cases and boundary conditions
}  Code often breaks in corner cases: empty lists, None, NaN, 0.0, lists

with repeated elements, non-existing file, …

}  This often involves making design decision: respond to corner case with
special behavior, or raise meaningful exception?

def test_lower_empty_string():
 # Given
 string = ''
 expected = ''

 # When
 output = string.lower()

 # Then
 assert output == expected

Testing, debugging, profiling

}  Other good corner cases for string.lower():
}  ‘do-nothing case’: string = 'hi'
}  symbols: string = '123 (!'

Pietro Berkes, Sept 2016

Common testing pattern
}  Often these cases are collected in a single test:

def test_lower():
 # Given
 # Each test case is a tuple of (input, expected_result)
 test_cases = [('HeLlO wOrld', 'hello world'),
 ('hi', 'hi'),
 ('123 ([?', '123 ([?'),
 ('', '')]

 for string, expected in test_cases:
 # When
 output = string.lower()
 # Then
 assert output == expected

Testing, debugging, profiling Pietro Berkes, Sept 2016

Numerical fuzzing
}  Use deterministic test cases when possible

}  In most numerical algorithm, this will cover only over-
simplified situations; in some, it is impossible

}  Fuzz testing: generate random input
}  Outside scientific programming it is mostly used to stress-test

error handling, memory leaks, safety
}  For numerical algorithm, it is often used to make sure one covers

general, realistic cases
}  The input may be random, but you still need to know what to

expect
}  Make failures reproducible by saving or printing the random seed

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Hands-on!
}  Write two tests for the function numpy.var :

1) First, a deterministic test
2) Then, a numerical fuzzing test

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Numerical fuzzing – solution

def test_var_deterministic():
 x = numpy.array([-2.0, 2.0])
 expected = 4.0
 assert isclose(numpy.var(x), expected)

def test_var_fuzzing():
 rand_state = numpy.random.RandomState(8393)

 N, D = 100000, 5
 # Goal variances: [0.1 , 0.45, 0.8 , 1.15, 1.5]
 expected = numpy.linspace(0.1, 1.5, D)

 # Generate random, D-dimensional data
 x = rand_state.randn(N, D) * numpy.sqrt(expected)
 variance = numpy.var(x, axis=0)
 numpy.testing.assert_allclose(variance, expected, rtol=1e-2)

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Testing learning algorithms
}  Learning algorithms can get stuck in local maxima, the solution

for general cases might not be known (e.g., unsupervised
learning)

}  Turn your validation cases into tests

}  Stability tests:
}  Start from final solution; verify that the algorithm stays there
}  Start from solution and add a small amount of noise to the

parameters; verify that the algorithm converges back to the
solution

}  Generate data from the model with known parameters
}  E.g., linear regression: generate data as y = a*x + b + noise

for random a, b, and x, then test that the algorithm is able to
recover a and b

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Other common cases
}  Test general routines with specific ones

}  Example: test polynomial_expansion(data, degree)
with quadratic_expansion(data)

}  Test optimized routines with brute-force approaches
}  Example: test function computing analytical derivative with

numerical derivative

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Example: eigenvector decomposition
}  Consider the function values, vectors = eigen(matrix)

}  Test with simple but general cases:
}  use full matrices for which you know the exact solution

(from a table or computed by hand)

}  Test general routine with specific ones:
}  use the analytical solution for 2x2 matrices

}  Numerical fuzzing:
}  generate random eigenvalues, random eigenvector; construct the matrix;

then check that the function returns the correct values

}  Test with boundary cases:
}  test with diagonal matrix: is the algorithm stable?
}  test with a singular matrix: is the algorithm robust? Does it raise

appropriate error when it fails?

Pietro Berkes, Sept 2016 Testing, debugging, profiling

No safety net!
}  Testing of contributed code

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Hands-on!
}  Write a test for your find_maxima function

}  Correct the function if the function was incorrect, or clean it
up if it wasn’t

}  Run the test again and watch it pass

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Testing is good for your self-esteem

Pietro Berkes, Sept 2016 Testing, debugging, profiling

}  Immediately: Always be confident that your results are correct,
whether your approach works of not

}  In the future: save your future self some trouble!
}  Example: mdp.utils.routine.permute

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Optimization and profiling

Next up: Testing makes you efficient, too!

Pietro Berkes, Sept 2016 Testing, debugging, profiling

}  Confidence:
}  Tests make you trust your code
}  Correctness is main requirement for scientific code
}  You must have a strategy to ensure correctness

}  Efficiency:
}  An additional big bonus of testing is that your code is ready for

improvements
}  Code can change, and correctness is assured by tests
}  Happily scale your code up!

The agile development cycle

unittest

pdb

timeit
cProfile
line_profiler

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Pick your next feature

Write tests
to check that feature works

Write simplest code
that makes tests pass

Run tests and debug
until all tests pass

Refactor and optimize
only if necessary

Be careful with optimization
}  Python is slower than C, but not prohibitively so

}  In scientific applications, this difference is often not noticeable:
the costly parts of numpy, scipy, … are written in C or
Fortran

}  In many cases, scientist time, not computer time is the
bottleneck
}  Researchers need to be able to explore many different ideas
}  Always weight the time you spend on a task vs benefits
}  Keep this diagram around: https://xkcd.com/1205/

 Testing, debugging, profiling Pietro Berkes, Sept 2016

Optimization methods hierarchy
}  (This is mildly controversial)

}  In order of preference:
}  Don’t do anything
}  Vectorize your code using numpy
}  Use a “magic optimization” tool, like numexpr, or numba
}  Spend some money on better hardware (faster machine, SSD),

optimized libraries (e.g., Intel’s MKL)
}  Use Cython
}  Use GPU acceleration
}  Parallelize your code

Testing, debugging, profiling Pietro Berkes, Sept 2016

How to optimize
}  Usually, a small percentage of your code takes up most of the

time

1.  Identify time-consuming parts of the code
Where’s the bottleneck? Computations? Disk I/O?
Memory I/O? (see also Francesc’s class later this week)
Use a profiler!

2.  Only optimize those parts of the code

3.  Keep running the tests to make sure that code is not broken

}  Stop optimizing as soon as possible

Testing, debugging, profiling Pietro Berkes, Sept 2016

Measuring time: timeit
}  IPython magic command: %timeit

}  Precise timing of a function/expression

}  Test different versions of a small amount of code, often used in
interactive Python shell

In [6]: %timeit cube(123)
10000000 loops, best of 3: 185 ns per loop

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Hands-on!
}  Write a dot product function in pure Python and time it in

IPython using %timeit:

dot_product(x, y) is
x[1] * y[1] + x[2] * y[2] + … + x[N] * y[N]

}  Write a version using numpy (vectorized), time it again

}  Time numpy.dot

}  Try with large (1000 elements) and small vectors (5 elements)

Pietro Berkes, Sept 2016 Testing, debugging, profiling

factorial

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Follow with me while we profile the file
hands_on/factorial/factorial.py

Measuring time: time
}  On *nix systems, the command time gives a quick way of

measuring time:

}  “real” is wall clock time

}  “user” is CPU time executing the script

}  “sys” is CPU time spent in system calls

$ time python your_script.py

real 0m0.135s
user 0m0.125s
sys 0m0.009s

Pietro Berkes, Sept 2016 Testing, debugging, profiling

cProfile
}  standard Python module to profile an entire application

(profile is an old, slow profiling module)

}  Running the profiler from command line:

}  Sorting options:

python -m cProfile –s cumulative myscript.py

Pietro Berkes, Sept 2016 Testing, debugging, profiling

tottime : time spent in function only
cumtime : time spent in function and sub-calls
calls : number of calls

cProfile
}  Or save results to disk for later inspection:

}  Explore with

python -m cProfile –o filename.prof myscript.py

Pietro Berkes, Sept 2016 Testing, debugging, profiling

python –m pstats filename.prof

stats [n | regexp]: print statistics
sort [cumulative, time, ...] : change sort order
callers [n | regexp]: show callers of functions
callees [n | regexp]: show callees of functions

Callgrind

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Using callgrind
Callgrind gives graphical representation of profiling results:

}  Run profiler:
python -m cProfile -o factorial.prof factorial.py

}  Transform results in callgrind format:
pyprof2calltree -i factorial.prof -o callgrind.out.1

}  Run callgrind:
qcallgrind callgrind.out.1
or
kcachegrind callgrind.out.1

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Hands-on
}  Make sure you can profile and run cachegrind

}  Optimize the factorial funciton
}  Modify the code
}  Run tests to make sure it still works
}  Profile and measure progress

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Fine-grained profiling: kernprof
}  You can profile a subset of all functions by decorating them

with @profile
kernprof –b -v factorial.py

}  Line-by-line profiling
kernprof -b -l -v factorial.py

Pietro Berkes, Sept 2016 Testing, debugging, profiling

No safety net!
}  Optimization of contributed code

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Debugging

The agile development cycle

unittest

pdb

timeit
cProfile
line_profiler

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Pick your next feature

Write tests
to check that feature works

Write simplest code
that makes tests pass

Run tests and debug
until all tests pass

Refactor and optimize
only if necessary

Debugging
}  The best way to debug is to avoid bugs

}  By writing tests, you anticipate the bugs

}  Your test cases should already exclude a big portion of the
possible causes

}  Core idea in debugging: you can stop the execution of your
application at the bug, look at the state of the variables, and
execute the code step by step

}  Avoid littering your code with print statements

Testing, debugging, profiling Pietro Berkes, Sept 2016

pdb, the Python debugger
}  Command-line based debugger

}  pdb opens an interactive shell, in which one can
interact with the code
}  examine and change value of variables
}  execute code line by line
}  set up breakpoints
}  examine calls stack	

Pietro Berkes, Sept 2016 Testing, debugging, profiling

debugger

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Entering the debugger
}  Enter debugger at the start of a file:	
				python –m pdb myscript.py	
}  Enter at a specific point in the code (alternative to print):

}  If you have it installed, use ipdb instead:

# some code here	
# the debugger starts here	
import pdb;	
pdb.set_trace()	
rest of the code

Pietro Berkes, Sept 2016 Testing, debugging, profiling

import ipdb;	
ipdb.set_trace()

Entering the debugger from ipython
}  From ipython:
%pdb – preventive
%debug – post-mortem

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Static checking
One of the problems with debugging in Python is that most bugs
only appear when the code executes.

“Static checking” tools analyze the code without executing it.

}  pep8: check that the style of the files is compatible with PEP8

}  pyflakes: look for errors like defined but unused variables,
undefined names, etc.

}  flake8: pep8 and pyflakes in a single, handy command

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Hands-on!
}  Run flake8 on the pyanno package.

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Recommended readings

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Final thoughts
}  Good programming practices, with testing in the front line, will

help you becoming confident about your results, and efficient
at navigating your research project

}  For maximum efficiency, check out how these tools can be
integrated with your editor / IDE

Testing, debugging, profiling Pietro Berkes, Sept 2016

The End
}  Thank you!

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Exercises

Pietro Berkes, Sept 2016 Testing, debugging, profiling

Pietro Berkes, Sept 2016 Testing, debugging, profiling

