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You as the Master of Research 

You start a new project and identify a number of possible leads.  

You quickly develop a prototype of the most promising ones; 
once a prototype is finished, you can confidently decide 
whether that lead is a dead end, or worth pursuing.  

Once you find an idea that is worth spending energy on, you take 
the prototype and easily re-organize it and optimize it so 
that it scales up to the full size of your problem.  

As expected, the scaled up experiment delivers good results 
and your next paper is under way. 
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Reaching Enlightenment 
}  How do we get to the blessed state of confidence and 

efficiency? 

}  Being a Python expert is not sufficient, good programming 
practices make a big difference 

}  We can learn a lot from the development methods developed 
for commercial and open source software 
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Warm-up project 
}  Write a function that finds the position of local maxima in a 

list of numbers 
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Warm-up project 
}  Write a function that finds the position of local maxima in a 

list of numbers 

}  Check your solution with these inputs: 
}  Input: [1, 4, -5, 0, 2, 1]  Expected result: [1, 4] 
}  Input: [-1, -1, 0, -1]   Expected result: [2] 
}  Input: [4, 2, 1, 3, 1, 5]  Expected result: [0, 3, 5] 
}  Input: [1, 2, 2, 1]   Expected result: [1] (or [2], or [1, 2]) 
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Outline 
}  The agile programming cycle 

}  Testing scientific code 

}  Profiling and optimization 

}  Debugging 
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Before we start 
}  Clone the repository with the material for this class: 
https://github.com/ASPP/testing_debugging_profiling.git 
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The agile development cycle 
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Pick your next feature 

Write tests  
to check that feature works  

Write simplest code  
that makes tests pass 

Run tests and debug  
until all tests pass 

Refactor and optimize  
only if necessary 



Python tools for agile development 

py.test 

pdb 

timeit 
cProfile 
line_profiler 
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Pick your next feature 

Write tests  
to check that feature works  

Write simplest code  
that makes tests pass 

Run tests and debug  
until all tests pass 

Refactor and optimize  
only if necessary 
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Testing scientific code 



The agile development cycle 

py.test 

pdb 

timeit 
cProfile 
line_profiler 
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Pick your next feature 

Write tests  
to check that feature works  

Write simplest code  
that makes tests pass 

Run tests and debug  
until all tests pass 

Refactor and optimize  
only if necessary 



Why write tests? 
}  Confidence: 

}  Tests make you trust your code 
}  You will know when a result is negative because the approach is 

wrong, and when there is a bug 

}  Correctness is main requirement for scientific code 
}  You must have a strategy to ensure correctness 
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The unfortunate story of Geoffrey Chang 

Testing, debugging, profiling 

Retractions due to software bugs

Retractions due to software bugs
Science, Dec 2006: 5 high-profile retractions (3x Science, PNAS, J. Mol. Biol.) because 
”an in-house data reduction program introduced a change in sign for anomalous 
differences”  
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Meanwhile on Wall Street… 

Testing, debugging, profiling 

NYT, 2 August 2012 

Source: Google Finance 
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Meanwhile on Wall Street… 

Testing, debugging, profiling 

NYT, 2 August 2012 

Source: Google Finance 
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… but it 
worked on my 

machine! 



Effect of software bugs in science 

Testing, debugging, profiling 
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bug severity 

oops, wrong 
labels! 

need to send 
errata corrige 

end of career 

Pietro Berkes, Sept 2016 



Testing with Python 
}  Tests are automated: 

}  Write test suite in parallel with your code 
}  External software runs the tests and provides reports and 

statistics 

============================ test session starts ================================!
platform darwin -- Python 3.5.2, pytest-2.9.2, py-1.4.31, pluggy-0.3.1 -- /Users/
pberkes/miniconda3/envs/gnode/bin/python !
cachedir: .cache !
rootdir: /Users/pberkes/o/pyschool/testing_debugging_profiling/hands_on/
pyanno_voting_solution, inifile: !
collected 4 items !
!
pyanno/tests/test_voting.py::test_labels_count PASSED!
pyanno/tests/test_voting.py::test_majority_vote PASSED!
pyanno/tests/test_voting.py::test_majority_vote_empty_item PASSED!
pyanno/tests/test_voting.py::test_labels_frequency PASSED!
========================= 4 passed in 0.23 seconds ==============================!
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Hands-on! 
}  Go to hands_on/pyanno_voting 

}  Execute the tests: 
py.test 
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How to run tests  

Testing, debugging, profiling 

}  1) Discover all tests in all subdirectories 
py.test -v 

}  2) Execute all tests in one module 
py.test -v pyanno/tests/test_voting.py 

}  3) Execute one single test 
py.test –v test_voting.py::test_majority_vote 
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Test suites in Python with py.test 
}  Writing tests with py.test is simple: 

}  Each test is a function whose name begins by “test_” 

}  Each test tests one feature in your code, and checks that it 
behaves correctly using “assertions”.  An exception is raised if it 
does not work as expected. 
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Possibly your first test file 
}  Create a new file, test_something.py: 

}  Save it, and execute the tests 
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def test_arithmetic(): 
    assert 1 == 1 
    assert 2 * 3 == 6 
 
def test_len_list(): 
    lst = ['a', 'b', 'c'] 
    assert len(lst) == 3 
 
 
 

 
 



Assertions 

}  assert statements check that some condition is met, and 
raise an exception otherwise 

}  Check that statement is true/false: 
assert 'Hi'.islower()   => fail 
assert not 'Hi'.islower()  => pass 

}  Check that two objects are equal: 
assert 2 + 1 == 3   => pass 
assert [2] + [1] == [2, 1]  => pass 
assert 'a' + 'b' != 'ab'  => fail 

}  assert can be used to compare all sorts of objects, and 
py.test will take care of producing an approriate error message 
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Hands-on! 
}  Add a new test to test_something.py:  

test that 1+2 is 3 

}  Execute the tests 
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Hands-on! 
}  Add a new test to test_something.py:  

test that 1+2 is 3 

}  Execute the tests 

}  Now test that 1.1 + 2.2 is 3.3 
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Floating point equality 
}  Real numbers are represented approximately as “floating 

point” numbers. When developing numerical code, we have to 
allow for approximation errors. 

}  Check that two numbers are approximately equal: 
from math import isclose 
def test_floating_point_math(): 
    assert isclose(1.1 + 2.2, 3.3)  => pass 

}  abs_tol controls the absolute tolerance: 
assert isclose(1.121, 1.2, abs_tol=1e-1)  => pass 
assert isclose(1.121, 1.2, abs_tol=1e-2)  => fail 

}  rel_tol controls the relative tolerance: 
assert isclose(120.1, 121.4, rel_tol=1e-1) => pass 
assert isclose(120.4, 121.4, rel_tol=1e-2) => fail 
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Hands-on! 
}  One more equality test: check that the sum of these two 

NumPy arrays: 
x = numpy.array([1, 1]) 
y = numpy.array([2, 2]) 
is equal to 
z = numpy.array([3, 3]) 
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Testing with NumPy arrays 
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def test_numpy_equality(): 
    x = numpy.array([1, 1]) 
    y = numpy.array([2, 2]) 
    z = numpy.array([3, 3]) 
    assert x + y == z 

__________________________________ test_numpy_equality __________________________________!
!
    def test_numpy_equality():!
        x = numpy.array([1, 1])!
        y = numpy.array([2, 2])!
        z = numpy.array([3, 3])!
>       assert x + y == z!
E       ValueError: The truth value of an array with more than one element is ambiguous. 
Use a.any() or a.all()!
!
code.py:47: ValueError !



Testing with numpy arrays 
}  numpy.testing defines appropriate functions: 
assert_array_equal(x, y) 
assert_array_almost_equal(x, 55 y, decimal=6) 

}  If you need to check more complex conditions: 
}  numpy.all(x): returns True if all elements of x are true 

numpy.any(x): returns True is any of the elements of x is true 
numpy.allclose(x, y, rtol=1e-05, atol=1e-08): returns True if 
two arrays are element-wise equal within a tolerance 
 

}  combine with logical_and, logical_or, logical_not: 
# test that all elements of x are between 0 and 1 
assert all(logical_and(x > 0.0, x < 1.0)) 
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Hands-on! 
}  In voting , there is an empty function, labels_frequency.   

Write a test for it, then an implementation. 
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def labels_frequency(annotations, nclasses): 
    """Compute the total frequency of labels in observed annotations. 
 
    Example: 
    >>> labels_frequency([[1, 1, 2], [-1, 1, 2]], 4) 
    array([ 0. ,  0.6,  0.4,  0. ]) 
 
    Arguments 
    --------- 
    annotations : array-like object, shape = (n_items, n_annotators) 
        annotations[i,j] is the annotation made by annotator j on item i 
    nclasses : int 
        Number of label classes in `annotations` 
 
    Returns 
    ------- 
    freq : ndarray, shape = (n_classes, ) 
        freq[k] is the frequency of elements of class k in `annotations`, i.e. 
        their count over the number of total of observed (non-missing) elements 
    """ 
 



Testing error control 

Testing, debugging, profiling 

}  Check that an exception is raised: 
 

from py.test import raises 
def test_raises(): 
    with raises(SomeException): 
        do_something() 
        do_something_else() 
 

}  For example: 
 

with raises(ValueError): 
    int('XYZ’) 
 
passes, because 
 

int('XYZ’) 
ValueError: invalid literal for int() with base 10: 'XYZ' 
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Testing error control 
}  Use the most specific exception class, or the test may pass 

because of collateral damage: 
 
    # Test that file "None" cannot be opened. 
    with raises(IOError): 
        open(None, 'r') 
 
as expected, but 
 
    with raises(Exception): 
        open(None, 'r’) 
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=> fail 

=> pass 



Hands-on! 
}  Have a look at the docstring of labels_count :  

It raises an error if there are no valid observations, but that’s 
not tested! 

}  Add a test checking that the function raises an error if: 
1) We pass a list of invalid annotations (all missing values) 
2) We pass an empty list of annotations 
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How to test like a pro 

Testing, debugging, profiling 

}  What does a good test looks like? 

}  What should I test? 

}  Anything specific to scientific code? 

}  At first, testing is awkward: 
1) Where do I begin? 
2) What do I write in the test? 
3)  It’s too much effort, it’s slowing me down! 
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Basic structure of test 

Testing, debugging, profiling 

}  A good test is divided in three parts: 
}  Given: Put your system in the right state for testing 

}  Create data, initialize parameters, define constants… 

 
}  When: Execute the feature that you are testing 

}  Typically one or two lines of code 

}  Then: Compare outcomes with the expected ones 
}  Define the expected result of the test 
}  Set of assertions that check that the new state of your system matches 

your expectations 
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Test simple but general cases 
}  Start with simple, general case 

}  Take a realistic scenario for your code, try to reduce it to a simple example 

}  Tests for ‘lower’ method of strings 

def test_lower(): 
    # Given 
    string = 'HeLlO wOrld' 
    expected = 'hello world' 
 
    # When 
    output = string.lower() 
 
    # Then 
    assert output == expected 
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Test special cases and boundary conditions 
}  Code often breaks in corner cases: empty lists, None, NaN, 0.0, lists 

with repeated elements, non-existing file, … 

}  This often involves making design decision: respond to corner case with 
special behavior, or raise meaningful exception? 

def test_lower_empty_string(): 
    # Given 
    string = '' 
    expected = '' 
 
    # When 
    output = string.lower() 
 
    # Then 
    assert output == expected 
 

Testing, debugging, profiling 

}  Other good corner cases for string.lower():  
}  ‘do-nothing case’:   string = 'hi' 
}  symbols:                string = '123 (!' 
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Common testing pattern 
}  Often these cases are collected in a single test: 

def test_lower(): 
    # Given 
    # Each test case is a tuple of (input, expected_result) 
    test_cases = [('HeLlO wOrld', 'hello world'), 
                  ('hi', 'hi'), 
                  ('123 ([?', '123 ([?'), 
                  ('', '')] 
 
    for string, expected in test_cases: 
        # When 
        output = string.lower() 
        # Then 
        assert output == expected 
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Numerical fuzzing 
}  Use deterministic test cases when possible 

}  In most numerical algorithm, this will cover only over-
simplified situations; in some, it is impossible 

}  Fuzz testing: generate random input 
}  Outside scientific programming it is mostly used to stress-test 

error handling, memory leaks, safety 
}  For numerical algorithm, it is often used to make sure one covers 

general, realistic cases 
}  The input may be random, but you still need to know what to 

expect 
}  Make failures reproducible by saving or printing the random seed 
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Hands-on! 
}  Write two tests for the function numpy.var : 

1) First, a deterministic test 
2) Then, a numerical fuzzing test 
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Numerical fuzzing – solution 

def test_var_deterministic(): 
    x = numpy.array([-2.0, 2.0]) 
    expected = 4.0 
    assert isclose(numpy.var(x), expected) 
 
 
def test_var_fuzzing(): 
    rand_state = numpy.random.RandomState(8393) 
 
    N, D = 100000, 5 
    # Goal variances: [0.1 ,  0.45,  0.8 ,  1.15,  1.5] 
    expected = numpy.linspace(0.1, 1.5, D) 
 
    # Generate random, D-dimensional data 
    x = rand_state.randn(N, D) * numpy.sqrt(expected) 
    variance = numpy.var(x, axis=0) 
    numpy.testing.assert_allclose(variance, expected, rtol=1e-2) 
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Testing learning algorithms 
}  Learning algorithms can get stuck in local maxima, the solution 

for general cases might not be known (e.g., unsupervised 
learning) 

}  Turn your validation cases into tests 

}  Stability tests: 
}  Start from final solution; verify that the algorithm stays there 
}  Start from solution and add a small amount of noise to the 

parameters; verify that the algorithm converges back to the 
solution 

}  Generate data from the model with known parameters 
}  E.g., linear regression: generate data as   y = a*x + b + noise 

for random a, b, and x, then test that the algorithm is able to 
recover a and b 

Pietro Berkes, Sept 2016 Testing, debugging, profiling 



Other common cases 
}  Test general routines with specific ones 

}  Example: test polynomial_expansion(data, degree) 
with quadratic_expansion(data) 

}  Test optimized routines with brute-force approaches 
}  Example: test function computing analytical derivative with 

numerical derivative 
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Example: eigenvector decomposition 
}  Consider the function values, vectors = eigen(matrix) 

}  Test with simple but general cases: 
}  use full matrices for which you know the exact solution 

(from a table or computed by hand) 

}  Test general routine with specific ones: 
}  use the analytical solution for 2x2 matrices 

}  Numerical fuzzing: 
}  generate random eigenvalues, random eigenvector; construct the matrix; 

then check that the function returns the correct values 

}  Test with boundary cases: 
}  test with diagonal matrix: is the algorithm stable? 
}  test with a singular matrix: is the algorithm robust? Does it raise 

appropriate error when it fails? 
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No safety net! 
}  Testing of contributed code 
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Hands-on! 
}  Write a test for your find_maxima function 

}  Correct the function if the function was incorrect, or clean it 
up if it wasn’t 

}  Run the test again and watch it pass 
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Testing is good for your self-esteem 
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}  Immediately: Always be confident that your results are correct, 
whether your approach works of not 

}  In the future: save your future self some trouble! 
}  Example: mdp.utils.routine.permute 
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Optimization and profiling 



Next up: Testing makes you efficient, too!  
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}  Confidence: 
}  Tests make you trust your code 
}  Correctness is main requirement for scientific code 
}  You must have a strategy to ensure correctness 

}  Efficiency: 
}  An additional big bonus of testing is that your code is ready for 

improvements 
}  Code can change, and correctness is assured by tests 
}  Happily scale your code up! 



The agile development cycle 

unittest 

pdb 

timeit 
cProfile 
line_profiler 
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Pick your next feature 

Write tests  
to check that feature works  

Write simplest code  
that makes tests pass 

Run tests and debug  
until all tests pass 

Refactor and optimize  
only if necessary 



Be careful with optimization 
}  Python is slower than C, but not prohibitively so 

}  In scientific applications, this difference is often not noticeable: 
the costly parts of numpy, scipy, … are written in C or 
Fortran 

}  In many cases, scientist time, not computer time is the 
bottleneck 
}  Researchers need to be able to explore many different ideas 
}  Always weight the time you spend on a task vs benefits 
}  Keep this diagram around: https://xkcd.com/1205/ 
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Optimization methods hierarchy 
}  (This is mildly controversial) 

}  In order of preference: 
}  Don’t do anything 
}  Vectorize your code using numpy 
}  Use a “magic optimization” tool, like numexpr, or numba 
}  Spend some money on better hardware (faster machine, SSD), 

optimized libraries (e.g., Intel’s MKL) 
}  Use Cython 
}  Use GPU acceleration  
}  Parallelize your code 
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How to optimize 
}  Usually, a small percentage of your code takes up most of the 

time 

1.  Identify time-consuming parts of the code 
Where’s the bottleneck? Computations? Disk I/O?  
Memory I/O? (see also Francesc’s class later this week) 
Use a profiler! 

2.  Only optimize those parts of the code 

3.  Keep running the tests to make sure that code is not broken 

 

}  Stop optimizing as soon as possible 
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Measuring time: timeit 
}  IPython magic command: %timeit 

}  Precise timing of a function/expression 

}  Test different versions of a small amount of code, often used in 
interactive Python shell 
 
In [6]: %timeit cube(123) 
10000000 loops, best of 3: 185 ns per loop 
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Hands-on! 
}  Write a dot product function in pure Python and time it in 

IPython using %timeit: 
 
dot_product(x, y) is  
x[1] * y[1] + x[2] * y[2] + … + x[N] * y[N] 

}  Write a version using numpy (vectorized), time it again 

}  Time numpy.dot 

}  Try with large (1000 elements) and small vectors (5 elements) 
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factorial 
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Follow with me while we profile the file 
hands_on/factorial/factorial.py 



Measuring time: time 
}  On *nix systems, the command time gives a quick way of 

measuring time: 

}  “real” is wall clock time 

}  “user” is CPU time executing the script 

}  “sys” is CPU time spent in system calls 

$ time python your_script.py 
 
real  0m0.135s 
user  0m0.125s 
sys  0m0.009s 
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cProfile 
}  standard Python module to profile an entire application 

(profile is an old, slow profiling module) 

}  Running the profiler from command line: 
 
 

}  Sorting options: 

python -m cProfile –s cumulative myscript.py 
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tottime : time spent in function only 
cumtime : time spent in function and sub-calls 
calls   : number of calls 



cProfile 
}  Or save results to disk for later inspection: 

 
 

}  Explore with 

python -m cProfile –o filename.prof myscript.py 
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python –m pstats filename.prof 
 
stats [n | regexp]: print statistics 
sort [cumulative, time, ...] : change sort order 
callers [n | regexp]: show callers of functions 
callees [n | regexp]: show callees of functions 



Callgrind 
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Using callgrind 
Callgrind gives graphical representation of profiling results: 

}  Run profiler: 
python -m cProfile -o factorial.prof factorial.py  

}  Transform results in callgrind format: 
pyprof2calltree -i factorial.prof -o callgrind.out.1 

}  Run callgrind: 
qcallgrind callgrind.out.1 
or 
kcachegrind callgrind.out.1 
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Hands-on 
}  Make sure you can profile and run cachegrind 

}  Optimize the factorial funciton 
}  Modify the code 
}  Run tests to make sure it still works 
}  Profile and measure progress 
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Fine-grained profiling: kernprof 
}  You can profile a subset of all functions by decorating them 

with @profile 
kernprof –b -v factorial.py 

}  Line-by-line profiling 
kernprof -b -l -v factorial.py 

Pietro Berkes, Sept 2016 Testing, debugging, profiling 



No safety net! 
}  Optimization of contributed code 

Pietro Berkes, Sept 2016 Testing, debugging, profiling 



Pietro Berkes, Sept 2016 Testing, debugging, profiling 

Debugging 



The agile development cycle 

unittest 

pdb 

timeit 
cProfile 
line_profiler 
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Pick your next feature 

Write tests  
to check that feature works  

Write simplest code  
that makes tests pass 

Run tests and debug  
until all tests pass 

Refactor and optimize  
only if necessary 



Debugging 
}  The best way to debug is to avoid bugs 

}  By writing tests, you anticipate the bugs  

}  Your test cases should already exclude a big portion of the 
possible causes 

}  Core idea in debugging: you can stop the execution of your 
application at the bug, look at the state of the variables, and 
execute the code step by step 

}  Avoid littering your code with print statements 
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pdb, the Python debugger 
}  Command-line based debugger 

}  pdb opens an interactive shell, in which one can 
interact with the code 
}  examine and change value of variables 
}  execute code line by line 
}  set up breakpoints 
}  examine calls stack	
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debugger 
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Entering the debugger 
}  Enter debugger at the start of a file:	
				python –m pdb myscript.py	
}  Enter at a specific point in the code (alternative to print): 

}  If you have it installed, use ipdb instead: 

# some code here	
# the debugger starts here	
import pdb;	
pdb.set_trace()	
# rest of the code 
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import ipdb;	
ipdb.set_trace() 



Entering the debugger from ipython 
}  From ipython: 
%pdb – preventive 
%debug – post-mortem 
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Static checking 
One of the problems with debugging in Python is that most bugs 
only appear when the code executes. 

“Static checking” tools analyze the code without executing it. 

}  pep8: check that the style of the files is compatible with PEP8 

}  pyflakes: look for errors like defined but unused variables, 
undefined names, etc. 

}  flake8: pep8 and pyflakes in a single, handy command 
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Hands-on! 
}  Run flake8 on the pyanno package. 
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Recommended readings 
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Final thoughts 
}  Good programming practices, with testing in the front line, will 

help you becoming confident about your results, and efficient 
at navigating your research project 

}  For maximum efficiency, check out how these tools can be 
integrated with your editor / IDE 
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The End 
}  Thank you! 
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Exercises 
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