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Goals

* Recognize when your computation iIs memory
bounded, not CPU-bounded

* Learn techniques that helps you getting more
performance for memory-bound problems

* Learn to use existing packages for tackling these
poroblems



| et's Do Exercises First

Go to the schedule, click on the ‘Memory bound
poroblems’ link:

https://python.g-node.org/wiki/memory

and start doing exercises 0 to 3 (inclusive)


https://python.g-node.org/wiki/memory

“Across the industry, today’s chips are largely
able to execute code faster than we can feed
them with instructions and data.”

— Richard Sites, after his article
“It's The Memory, Stupid!”,
Microprocessor Report, 10(10),1996

The Starving CPU
Problem
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The gap Is wide and still opening!
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The Status of CPU
Starvation in 2016

 Memory latency is much slower (between 250x and
1000x) than processors.

* Memory bandwidth is improving at a better rate
than memory latency, but it is also slower than
processors (between 30x and 100x).



CPU Caches to the Rescue

 CPU cache latency and throughput
are much better than memory

 However: the faster they run the
smaller they must be (because of
heat dissipation problems)




Computer Architecture
Evolution

Up to end 80's  90’s and 2000’s 2010’s




When CPU Caches Are
Fffective?

Mainly in a couple of

scenarios:

 Time locality: when the dataset is

reused

o Spatial locality: wh

en the dataset IS

accessed seguen

lally



Time Locality

Parts of the dataset are reused

Memory (C array)



Spatial Locality

Dataset is accessed sequentially

Good!
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Bad Cache

Memory (C array)



The Blocking Technique

When accessing disk or memory, get a contiguous block
that fits in CPU cache, operate upon it and reuse it as
much as possible.

l C = A <oper>B
Cach l

Dataset A O
ache
[

Dataset B

Use this extensively to leverage
spatial and temporal localities



I'ne Blocking Technigue In
Action (Exercise 0)

- CPU vs Memory Benchmark
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I'ne Blocking Technigue In
Action (Exercise 0)

CPU vs Memory Benchmark

0.10

0.08

0.06 |

Execution time [s]

0.04

0.02 ¢

0.00 ‘ n 1
10° 104 10° 10° 107
Block size [b]

CPU: Intel Xeon(R) CPU E3-1245 v5 @ 3.50GHz (Skylake)



Trends in Computer
Architecture



We Are In A Multicore Age

Local
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Memory Controller
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* [his requires special programming measures to
leverage all its potential: threads, multiprocessing
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SIMD: Single Instruction,
Multiple Data

(a) Scalar Operation (b) SIMD Operation
+ B = C
h : st A, B, C
Aal + Bal = C, A, B, C
- —

Al + |8l = kG A, B, C,
A, B C

Al + |8l =le : —

More operations in the same CPU clock



Forthcoming Trends in CPU

More Cores

Wider Vectors
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Hierarchy of Memory
By 2018 (Educated Guess)

HDD (persistent)
SSD SATA (persistent)

SSD PCle (persistent)
XPoint (persistent)
RAM (addressable)

O levels will be common!



nuUMeXpr

* |tis a computational engine for NumPy that makes
a sensible use of the memory hierarchy for better
performance

* |t can use multi-core (via multi-threading) and SIMD
(via Intel's MKL) for better CPU usage.

* PyTables, pandas and bcolz (among others) can all
leverage numexpr automatically it installed



Computing with numexpr

Time to evaluate polynomial (1 thread)
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25X 3 + . 75"°x*2 - 1.5"x — 2 ((.25"x + .75)*x - 1.5)*x — 2



Power Expansion

Numexpr expands expression:

0.25%kxkk3 + 0.75%X%k%2 + 1.5%x - 2

tO:

0.25kxkXxkx + 0.75%kxkx + 1.5%x - 2

sO, no need to use the expensive pow()



Computing with NumPy

Temporaries go to memory

105+

a*b+cC

memory




Computing with numexpr
Temporaries stay in cache




Multithreaded numexpr
and Beyond: Numba



Time (s)
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numexpr Allows
Multithreading for Free

numexpr with 16 (logical) cores
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Memory bounded!



Time (s)

Transcendental Functions
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numexpr with 16 (logical) cores
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M sin(x)**2+cos(x)**2

CPU bounded!




Numexpr Limitations

* Numexpr only implements element-wise
operations, i.e. ‘a*b’ is evaluated as:

for i in range(N):
c[i] = a[i] * b[i]
* |n particular, it cannot deal with things like:
for i in range(N):

c[1] = a[1-1] + a[1] * b[1]



Numba: Overcoming
numexpr Limitations

e Numba is a JIT that can translate a subset of
the Python language into machine code

e |t uses LLVM Infrastructure behind the scenes

 Can achieve similar or better performance than
numexpr, but with more flexibility



How Numba works

Python Function Machine Code
LLVM-PY




lake-away Messages

* \WWhen you have to optimize, have in mind the
starving CPU problem.

* Do not always try to parallelize blindly. Give
optimization a try first.

* Use proper tools when you need speed. Using one
single tool for everything is not going to work well.



What's Next

Parallel Computing tomorrow (Eilif)
Efficient Data Containers (in-memory and on-disk)
Please continue working on matplotlib PRs!

Social event this night!



