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Goals

• Recognize when your computation is memory 
bounded, not CPU-bounded 

• Learn techniques that helps you getting more 
performance for memory-bound problems 

• Learn to use existing packages for tackling these 
problems



Let’s Do Exercises First

Go to the schedule, click on the ‘Memory bound 
problems’ link:  

https://python.g-node.org/wiki/memory 

and start doing exercises 0 to 3 (inclusive)

https://python.g-node.org/wiki/memory


The Starving CPU 
Problem

“Across the industry, today’s chips are largely 
able to execute code faster than we can feed 

them with instructions and data.”

– Richard Sites, after his article 
 “It’s The Memory, Stupid!”,  

Microprocessor Report, 10(10),1996



Memory Access Time 
vs CPU Cycle Time

The gap is wide and still opening!



Book in 
2009



The Status of CPU 
Starvation in 2016

• Memory latency is much slower (between 250x and 
1000x) than processors. 

• Memory bandwidth is improving at a better rate 
than memory latency, but it is also slower than 
processors (between 30x and 100x).



CPU Caches to the Rescue

• CPU cache latency and throughput 
are much better than memory 

• However: the faster they run the 
smaller they must be (because of 
heat dissipation problems)



Computer Architecture 
Evolution

Up to end 80’s 90’s and 2000’s 2010’s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to 
the CPU) are faster but have reduced 
capacities and are best suited for per-
forming computations; higher-level 
caches are slower but have higher ca-
pacity and are best suited for storage 
purposes.

Figure 1 shows the evolution of 
this hierarchical memory model over 
time. The forthcoming (or should I 
say the present?) hierarchical model 
includes a minimum of six memory 
levels. Taking advantage of such a 
deep hierarchy isn’t trivial at all, and 
programmers must grasp this fact 
if they want their code to run at an  
acceptable speed.

Techniques to Fight  
Data Starvation 
Unlike the good old days when the 
processor was the main bottleneck, 
memory organization has now be-
come the key factor in optimization. 
Although learning assembly language 
to get direct processor access is (rela-
tively) easy, understanding how the 
hierarchical memory model works—
and adapting your data structures 
accordingly—requires considerable 
knowledge and experience. Until we 
have languages that facilitate the de-
velopment of programs that are aware 

of memory hierarchy (for an example 
in progress, see the Sequoia project 
at www.stanford.edu/group/sequoia), 
programmers must learn how to 
deal with this problem at a fairly low 
level.4 

There are some common techniques 
to deal with the CPU data-starvation 
problem in current hierarchical mem-
ory models. Most of them exploit the 
principles of temporal and spatial  
locality. In temporal locality, the target 
dataset is reused several times over 
a short period. The first time the 
dataset is accessed, the system must 
bring it to cache from slow memory; 
the next time, however, the processor 
will fetch it directly (and much more 
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In 
this case, circuits are designed to fetch 
memory elements that are clumped 
together much faster than if they’re 
dispersed. In addition, specialized 
circuitry (even in current commodity 
hardware) offers prefetching—that is, 
it can look at memory-access patterns 
and predict when a certain chunk of 
data will be used and start to trans-
fer it to cache before the CPU has  
actually asked for it. The net result is 
that the CPU can retrieve data much 
faster when spatial locality is properly 
used.

Programmers should exploit the op-
timizations inherent in temporal and 
spatial locality as much as possible. 
One generally useful technique that 
leverages these principles is the block-
ing technique (see Figure 2). When 
properly applied, the blocking tech-
nique guarantees that both spatial and 
temporal localities are exploited for 
maximum benefit.

Although the blocking technique 
is relatively simple in principle, it’s 
less straightforward to implement 
in practice. For example, should the 
basic block fit in cache level one, 
two, or three? Or would it be bet-
ter to fit it in main memory—which 
can be useful when computing large, 
disk-based datasets? Choosing from 
among these different possibilities 
is difficult, and there’s no substitute 
for experimentation and empirical 
analysis.

In general, it’s always wise to use 
libraries that already leverage the 
blocking technique (and others) for 
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is 
a virtual machine written in Python 
and C that lets you evaluate poten-
tially complex arithmetic expressions 
over arbitrarily large arrays. Using the 
blocking technique in combination 

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current 
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade: 
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.
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When CPU Caches Are 
Effective?

Mainly in a couple of scenarios: 

• Time locality: when the dataset is 
reused 

• Spatial locality: when the dataset is 
accessed sequentially



Time Locality



Spatial Locality



The Blocking Technique






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





Use this extensively to leverage 
spatial and temporal localities

When accessing disk or memory, get a contiguous block 
that fits in CPU cache, operate upon it and reuse it as 

much as possible.



The Blocking Technique in 
Action (Exercise 0)

CPU: Intel Xeon E312xx @ 2.00GHz (Sandy Bridge) 



The Blocking Technique in 
Action (Exercise 0)

CPU: Intel Xeon(R) CPU E3-1245 v5 @ 3.50GHz (Skylake) 



Trends in Computer 
Architecture



We Are In A Multicore Age

• This requires special programming measures to 
leverage all its potential: threads, multiprocessing



SIMD: Single Instruction, 
Multiple Data

More operations in the same CPU clock



Forthcoming Trends in CPU

CPU+GPU  
 Integration



Hierarchy of Memory 
By 2018 (Educated Guess)

SSD SATA (persistent)

L4
RAM (addressable)

XPoint (persistent)

HDD (persistent)

L3
L2
L1 9 levels will be common!

SSD PCIe (persistent)



numexpr
• It is a computational engine for NumPy that makes 

a sensible use of the memory hierarchy for better 
performance 

• It can use multi-core (via multi-threading) and SIMD 
(via Intel’s MKL) for better CPU usage.  

• PyTables, pandas and bcolz (among others) can all 
leverage numexpr automatically if installed



Computing with numexprNumPy
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Power Expansion 

Numexpr expands expression:  
 
0.25*x**3 + 0.75*x**2 + 1.5*x - 2

to:

0.25*x*x*x + 0.75*x*x + 1.5*x - 2 
 
so,  no need to use the expensive pow()



Computing with NumPy 
Temporaries go to memory



Computing with numexpr 
Temporaries stay in cache



Multithreaded numexpr 
and Beyond: Numba



numexpr Allows 
Multithreading for Free

Numexpr
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Memory bounded!



Transcendental Functions
Numexpr
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Numexpr Limitations
• Numexpr only implements element-wise 

operations, i.e.  ‘a*b’ is evaluated as:  
 
for i in range(N):

    c[i] = a[i] * b[i]

• In particular, it cannot deal with things like: 

for i in range(N):

    c[i] = a[i-1] + a[i] * b[i]



Numba: Overcoming 
numexpr Limitations

• Numba is a JIT that can translate a subset of 
the Python language into machine code 

• It uses LLVM infrastructure behind the scenes 

• Can achieve similar or better performance than 
numexpr, but with more flexibility 



LLVM

Intel Nvidia AppleAMD

OpenCLISPC CUDA CLANGOpenMP

LLVM-PY

Python Function Machine Code

How Numba works



Take-away Messages 

• When you have to optimize, have in mind the 
starving CPU problem. 

• Do not always try to parallelize blindly.  Give 
optimization a try first. 

• Use proper tools when you need speed.  Using one 
single tool for everything is not going to work well.



What’s Next

• Parallel Computing tomorrow (Eilif) 

• Efficient Data Containers (in-memory and on-disk) 

• Please continue working on matplotlib PRs! 

• Social event this night!


