
Memory Bound
Computing

Francesc Alted
Freelance Consultant & Trainer

http://www.blosc.org/professional-services.html

Advanced Scientific Programming in Python
Reading, UK

 September, 2016

http://www.blosc.org/professional-services.html

Goals

• Recognize when your computation is memory
bounded, not CPU-bounded

• Learn techniques that helps you getting more
performance for memory-bound problems

• Learn to use existing packages for tackling these
problems

Let’s Do Exercises First

Go to the schedule, click on the ‘Memory bound
problems’ link:

https://python.g-node.org/wiki/memory

and start doing exercises 0 to 3 (inclusive)

https://python.g-node.org/wiki/memory

The Starving CPU
Problem

“Across the industry, today’s chips are largely
able to execute code faster than we can feed

them with instructions and data.”

– Richard Sites, after his article 
 “It’s The Memory, Stupid!”,  

Microprocessor Report, 10(10),1996

Memory Access Time
vs CPU Cycle Time

The gap is wide and still opening!

Book in
2009

The Status of CPU
Starvation in 2016

• Memory latency is much slower (between 250x and
1000x) than processors.

• Memory bandwidth is improving at a better rate
than memory latency, but it is also slower than
processors (between 30x and 100x).

CPU Caches to the Rescue

• CPU cache latency and throughput
are much better than memory

• However: the faster they run the
smaller they must be (because of
heat dissipation problems)

Computer Architecture
Evolution

Up to end 80’s 90’s and 2000’s 2010’s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to
the CPU) are faster but have reduced
capacities and are best suited for per-
forming computations; higher-level
caches are slower but have higher ca-
pacity and are best suited for storage
purposes.

Figure 1 shows the evolution of
this hierarchical memory model over
time. The forthcoming (or should I
say the present?) hierarchical model
includes a minimum of six memory
levels. Taking advantage of such a
deep hierarchy isn’t trivial at all, and
programmers must grasp this fact
if they want their code to run at an
acceptable speed.

Techniques to Fight
Data Starvation
Unlike the good old days when the
processor was the main bottleneck,
memory organization has now be-
come the key factor in optimization.
Although learning assembly language
to get direct processor access is (rela-
tively) easy, understanding how the
hierarchical memory model works—
and adapting your data structures
accordingly—requires considerable
knowledge and experience. Until we
have languages that facilitate the de-
velopment of programs that are aware

of memory hierarchy (for an example
in progress, see the Sequoia project
at www.stanford.edu/group/sequoia),
programmers must learn how to
deal with this problem at a fairly low
level.4

There are some common techniques
to deal with the CPU data-starvation
problem in current hierarchical mem-
ory models. Most of them exploit the
principles of temporal and spatial
locality. In temporal locality, the target
dataset is reused several times over
a short period. The first time the
dataset is accessed, the system must
bring it to cache from slow memory;
the next time, however, the processor
will fetch it directly (and much more
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In
this case, circuits are designed to fetch
memory elements that are clumped
together much faster than if they’re
dispersed. In addition, specialized
circuitry (even in current commodity
hardware) offers prefetching—that is,
it can look at memory-access patterns
and predict when a certain chunk of
data will be used and start to trans-
fer it to cache before the CPU has
actually asked for it. The net result is
that the CPU can retrieve data much
faster when spatial locality is properly
used.

Programmers should exploit the op-
timizations inherent in temporal and
spatial locality as much as possible.
One generally useful technique that
leverages these principles is the block-
ing technique (see Figure 2). When
properly applied, the blocking tech-
nique guarantees that both spatial and
temporal localities are exploited for
maximum benefit.

Although the blocking technique
is relatively simple in principle, it’s
less straightforward to implement
in practice. For example, should the
basic block fit in cache level one,
two, or three? Or would it be bet-
ter to fit it in main memory—which
can be useful when computing large,
disk-based datasets? Choosing from
among these different possibilities
is difficult, and there’s no substitute
for experimentation and empirical
analysis.

In general, it’s always wise to use
libraries that already leverage the
blocking technique (and others) for
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is
a virtual machine written in Python
and C that lets you evaluate poten-
tially complex arithmetic expressions
over arbitrarily large arrays. Using the
blocking technique in combination

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade:
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.

Mechanical disk Mechanical disk Mechanical disk

Speed

C
ap

ac
ity

Solid state disk

Main memory

Level 3 cache

Level 2 cache

Level 1 cache

Level 2 cache

Level 1 cache

Main memoryMain memory

CPUCPU

(a) (b) (c)

Central
processing
unit (CPU)

CISE-12-2-ScientificPro.indd 3 1/29/10 11:21:43 AM

When CPU Caches Are
Effective?

Mainly in a couple of scenarios:

• Time locality: when the dataset is
reused

• Spatial locality: when the dataset is
accessed sequentially

Time Locality

Spatial Locality

The Blocking Technique















Use this extensively to leverage
spatial and temporal localities

When accessing disk or memory, get a contiguous block
that fits in CPU cache, operate upon it and reuse it as

much as possible.

The Blocking Technique in
Action (Exercise 0)

CPU: Intel Xeon E312xx @ 2.00GHz (Sandy Bridge)

The Blocking Technique in
Action (Exercise 0)

CPU: Intel Xeon(R) CPU E3-1245 v5 @ 3.50GHz (Skylake)

Trends in Computer
Architecture

We Are In A Multicore Age

• This requires special programming measures to
leverage all its potential: threads, multiprocessing

SIMD: Single Instruction,
Multiple Data

More operations in the same CPU clock

Forthcoming Trends in CPU

CPU+GPU  
 Integration

Hierarchy of Memory 
By 2018 (Educated Guess)

SSD SATA (persistent)

L4
RAM (addressable)

XPoint (persistent)

HDD (persistent)

L3
L2
L1 9 levels will be common!

SSD PCIe (persistent)

numexpr
• It is a computational engine for NumPy that makes

a sensible use of the memory hierarchy for better
performance

• It can use multi-core (via multi-threading) and SIMD
(via Intel’s MKL) for better CPU usage.

• PyTables, pandas and bcolz (among others) can all
leverage numexpr automatically if installed

Computing with numexprNumPy

Page 1

.25*x**3 + .75*x**2 - 1.5*x – 2 1,613 0,138

0,301 0,11

x 0,052 0,045

sin(x)**2+cos(x)**2 0,715 0,559

NumPy Numexpr

((.25*x + .75)*x - 1.5)*x – 2

NumPy Numexpr

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

NumPy vs Numexpr (1 thread)

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

sin(x)**2+cos(x)**2

T
im

e
 (

s
)

.25*x**3 + .75*x**2 - 1.5*x – 2 ((.25*x + .75)*x - 1.5)*x – 2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Time to evaluate polynomial (1 thread)

NumPy

Numexpr

T
im

e
 (

s
)

Power Expansion

Numexpr expands expression:  
 
0.25*x**3 + 0.75*x**2 + 1.5*x - 2

to:

0.25*x*x*x + 0.75*x*x + 1.5*x - 2 
 
so, no need to use the expensive pow()

Computing with NumPy 
Temporaries go to memory

Computing with numexpr 
Temporaries stay in cache

Multithreaded numexpr
and Beyond: Numba

numexpr Allows
Multithreading for Free

Numexpr

Page 3

.25*x**3 + .75*x**2 - 1.5*x – 2x sin(x)**2+cos(x)**2

0,138 0,113 0,051 0,559

0,077 0,065 0,037 0,282

0,061 0,055 0,029 0,192

0,05 0,04 0,025 0,146

0,041 0,036 0,022 0,139

0,042 0,041 0,024 0,121

0,036 0,029 0,02 0,106

0,039 0,025 0,021 0,102

0,033 0,027 0,022 0,095

0,027 0,027 0,023 0,088

0,028 0,024 0,022 0,084

0,026 0,025 0,023 0,077

0,026 0,024 0,023 0,075

0,028 0,027 0,023 0,073

0,026 0,023 0,023 0,072

0,027 0,023 0,023 0,075

((.25*x + .75)*x - 1.5)*x – 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,1

0,2

0,3

0,4

0,5

0,6

Numexpr

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

sin(x)**2+cos(x)**2

T
im

e
 (

s
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

Numexpr (detail)

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

T
im

e
 (

s
)

numexpr with 16 (logical) cores

Memory bounded!

Transcendental Functions
Numexpr

Page 3

.25*x**3 + .75*x**2 - 1.5*x – 2x sin(x)**2+cos(x)**2

0,138 0,113 0,051 0,559

0,077 0,065 0,037 0,282

0,061 0,055 0,029 0,192

0,05 0,04 0,025 0,146

0,041 0,036 0,022 0,139

0,042 0,041 0,024 0,121

0,036 0,029 0,02 0,106

0,039 0,025 0,021 0,102

0,033 0,027 0,022 0,095

0,027 0,027 0,023 0,088

0,028 0,024 0,022 0,084

0,026 0,025 0,023 0,077

0,026 0,024 0,023 0,075

0,028 0,027 0,023 0,073

0,026 0,023 0,023 0,072

0,027 0,023 0,023 0,075

((.25*x + .75)*x - 1.5)*x – 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,1

0,2

0,3

0,4

0,5

0,6

Numexpr

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

sin(x)**2+cos(x)**2

T
im

e
 (

s
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

Numexpr (detail)

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

T
im

e
 (

s
)

numexpr with 16 (logical) cores

CPU bounded!

Numexpr Limitations
• Numexpr only implements element-wise

operations, i.e. ‘a*b’ is evaluated as:  
 
for i in range(N):

 c[i] = a[i] * b[i]

• In particular, it cannot deal with things like:

for i in range(N):

 c[i] = a[i-1] + a[i] * b[i]

Numba: Overcoming
numexpr Limitations

• Numba is a JIT that can translate a subset of
the Python language into machine code

• It uses LLVM infrastructure behind the scenes

• Can achieve similar or better performance than
numexpr, but with more flexibility

LLVM

Intel Nvidia AppleAMD

OpenCLISPC CUDA CLANGOpenMP

LLVM-PY

Python Function Machine Code

How Numba works

Take-away Messages

• When you have to optimize, have in mind the
starving CPU problem.

• Do not always try to parallelize blindly. Give
optimization a try first.

• Use proper tools when you need speed. Using one
single tool for everything is not going to work well.

What’s Next

• Parallel Computing tomorrow (Eilif)

• Efficient Data Containers (in-memory and on-disk)

• Please continue working on matplotlib PRs!

• Social event this night!

