
The Starving CPU
Problem

- or -
 How I Learned to Stop Worrying about CPU Speed

and Love Memory Access

Francesc Alted 
Freelance Trainer And Developer

Advanced Scientific Programming in Python, Split (Croatia)	

 September 11, 2014

Overview

• Motivation	

• The Data Access Issue	

• Why Modern CPUs Are Starving	

• Why Caches?	

• Techniques For Fighting Data Starvation	

• Optimal Containers for Big Data

Motivation	

- or -  

Why CPU Speed Is Not	

 The Holy Grail Any Longer,  

but still can help saving the day	

(although in an unexpected way!)

The MovieLens Dataset

• Datasets for movie ratings	

• Different sizes: 100K, 1M, 10M ratings (the
10M will be used in benchmarks ahead)	

• The datasets were collected over various
periods of time

http://www.grouplens.org/datasets/movielens/

http://www.grouplens.org/datasets/movielens/

Interactive Session
Starts
Materials in:  

https://github.com/Blosc/movielens-bench

Look for this IPython notebook:	

querying-assp14.ipynb

Based on previous work by Greg Reda:	

http://www.gregreda.com/2013/10/26/ 

using-pandas-on-the-movielens-dataset/

https://github.com/Blosc/movielens-bench
http://www.gregreda.com/2013/10/26/using-pandas-on-the-movielens-dataset/

Query Performance 
(old laptop)

• Compression leads to slightly better query speeds (5% faster)	

• Using numexpr really accelerates queries a lot

Note: all computations use a single thread

bcolz Storage Wins 
(MovieLens Dataset)

• Compressed bcolz allows for 15x win wrt. pandas	

• Compression is typically better for larger datasets (exercises)

Old laptop

‘Big Iron’
vs

10m records in Big Iron

Some Questions
1. Why numexpr can accelerate computations

on pandas, when both packages are
provided with computational kernels in C?	

2. Why NumPy queries are slow when
compared with pandas or bcolz (at least in
modern computers)?	

3. Why the overhead of compression is so
little (and negative in modern computers)?	

Short answer: by making a more efficient
use of the memory

The Starving CPU
Problem

The Starving CPU
Problem

• Current CPUs typically stay bored, doing
nothing most of the time	

• Why so?	

• Because they are basically waiting for
data

Memory Access Time
vs CPU Cycle Time

Quote Back in 1993
“We continue to benefit from tremendous increases in the raw speed of
microprocessors without proportional increases in the speed of memory.
This means that 'good' performance is becoming more closely tied to
good memory access patterns, and careful re-use of operands.”	

!
“No one could afford a memory system fast enough to satisfy every
(memory) reference immediately, so vendors depends on caches,
interleaving, and other devices to deliver reasonable memory
performance.”	

!

– Kevin Dowd, after his book “High Performance Computing”,
O’Reilly & Associates, Inc, 1993

Quote Back in 1996

“Across the industry, today’s chips are largely able to execute code
faster than we can feed them with instructions and data. There are no
longer performance bottlenecks in the floating-point multiplier or in
having only a single integer unit. The real design action is in memory
subsystems— caches, buses, bandwidth, and latency.”	

!
“Over the coming decade, memory subsystem design will be the only
important design issue for microprocessors..”	

!

– Richard Sites, after his article “It’s The Memory, Stupid!”,
Microprocessor Report, 10(10),1996

Book in 2009

The Status of CPU
Starvation in 2014

• Memory latency is much slower (between
100x and 250x) than processors.	

• Memory bandwidth is improving at a
better rate than memory latency, but it is
also lagging behind processors (between
30x and 100x).

CPU Caches to the
Rescue

• Vendors realized the Starving CPU
problem and responded
implementing caches in CPUs	

• CPU cache latency and throughput
are much better than memory	

• However: the faster they run the
smaller they must be

CPU Cache Evolution
Up to end 80’s 90’s and 2000’s 2010’s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to
the CPU) are faster but have reduced
capacities and are best suited for per-
forming computations; higher-level
caches are slower but have higher ca-
pacity and are best suited for storage
purposes.

Figure 1 shows the evolution of
this hierarchical memory model over
time. The forthcoming (or should I
say the present?) hierarchical model
includes a minimum of six memory
levels. Taking advantage of such a
deep hierarchy isn’t trivial at all, and
programmers must grasp this fact
if they want their code to run at an
acceptable speed.

Techniques to Fight
Data Starvation
Unlike the good old days when the
processor was the main bottleneck,
memory organization has now be-
come the key factor in optimization.
Although learning assembly language
to get direct processor access is (rela-
tively) easy, understanding how the
hierarchical memory model works—
and adapting your data structures
accordingly—requires considerable
knowledge and experience. Until we
have languages that facilitate the de-
velopment of programs that are aware

of memory hierarchy (for an example
in progress, see the Sequoia project
at www.stanford.edu/group/sequoia),
programmers must learn how to
deal with this problem at a fairly low
level.4

There are some common techniques
to deal with the CPU data-starvation
problem in current hierarchical mem-
ory models. Most of them exploit the
principles of temporal and spatial
locality. In temporal locality, the target
dataset is reused several times over
a short period. The first time the
dataset is accessed, the system must
bring it to cache from slow memory;
the next time, however, the processor
will fetch it directly (and much more
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In
this case, circuits are designed to fetch
memory elements that are clumped
together much faster than if they’re
dispersed. In addition, specialized
circuitry (even in current commodity
hardware) offers prefetching—that is,
it can look at memory-access patterns
and predict when a certain chunk of
data will be used and start to trans-
fer it to cache before the CPU has
actually asked for it. The net result is
that the CPU can retrieve data much
faster when spatial locality is properly
used.

Programmers should exploit the op-
timizations inherent in temporal and
spatial locality as much as possible.
One generally useful technique that
leverages these principles is the block-
ing technique (see Figure 2). When
properly applied, the blocking tech-
nique guarantees that both spatial and
temporal localities are exploited for
maximum benefit.

Although the blocking technique
is relatively simple in principle, it’s
less straightforward to implement
in practice. For example, should the
basic block fit in cache level one,
two, or three? Or would it be bet-
ter to fit it in main memory—which
can be useful when computing large,
disk-based datasets? Choosing from
among these different possibilities
is difficult, and there’s no substitute
for experimentation and empirical
analysis.

In general, it’s always wise to use
libraries that already leverage the
blocking technique (and others) for
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is
a virtual machine written in Python
and C that lets you evaluate poten-
tially complex arithmetic expressions
over arbitrarily large arrays. Using the
blocking technique in combination

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade:
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.

Mechanical disk Mechanical disk Mechanical disk

Speed
C

ap
ac

ity

Solid state disk

Main memory

Level 3 cache

Level 2 cache

Level 1 cache

Level 2 cache

Level 1 cache

Main memoryMain memory

CPUCPU

(a) (b) (c)

Central
processing
unit (CPU)

CISE-12-2-ScientificPro.indd 3 1/29/10 11:21:43 AM

When CPU Caches Are
Effective?

!

• Mainly in a couple of scenarios:	

• Time locality: when the dataset is
reused	

• Spatial locality: when the dataset is
accessed sequentially

Time Locality

Spatial Locality

The Blocking Technique















Use this extensively to leverage
spatial and temporal localities

When accessing disk or memory, get a contiguous block that fits
in CPU cache, operate upon it and reuse it as much as possible.

Time To Answer
Pending Question #1

lens.query("(title	
 ==	
 'Tom	
 and	
 Huck	
 (1995)')	
 &	
 (rating	
 ==	
 5)”)	

vs	

lens[(lens['title']	
 ==	
 'Tom	
 and	
 Huck	
 (1995)')	
 &	
 (lens['rating']	
 ==	
 5)]

� � � �����

���

���
���	

���
�����������������	����������
�
�����
����
������
�����

�
����

   









Blocking technique

at work!

Multithreaded numexpr

numexpr Allows
Multithreading for Free

Numexpr

Page 3

.25*x**3 + .75*x**2 - 1.5*x – 2x sin(x)**2+cos(x)**2

0,138 0,113 0,051 0,559

0,077 0,065 0,037 0,282

0,061 0,055 0,029 0,192

0,05 0,04 0,025 0,146

0,041 0,036 0,022 0,139

0,042 0,041 0,024 0,121

0,036 0,029 0,02 0,106

0,039 0,025 0,021 0,102

0,033 0,027 0,022 0,095

0,027 0,027 0,023 0,088

0,028 0,024 0,022 0,084

0,026 0,025 0,023 0,077

0,026 0,024 0,023 0,075

0,028 0,027 0,023 0,073

0,026 0,023 0,023 0,072

0,027 0,023 0,023 0,075

((.25*x + .75)*x - 1.5)*x – 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,1

0,2

0,3

0,4

0,5

0,6

Numexpr

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

sin(x)**2+cos(x)**2

T
im

e
 (

s
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

Numexpr (detail)

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

T
im

e
 (

s
)

numexpr with 16 (logical) cores

Memory bounded!

Transcendental
Functions

Numexpr

Page 3

.25*x**3 + .75*x**2 - 1.5*x – 2x sin(x)**2+cos(x)**2

0,138 0,113 0,051 0,559

0,077 0,065 0,037 0,282

0,061 0,055 0,029 0,192

0,05 0,04 0,025 0,146

0,041 0,036 0,022 0,139

0,042 0,041 0,024 0,121

0,036 0,029 0,02 0,106

0,039 0,025 0,021 0,102

0,033 0,027 0,022 0,095

0,027 0,027 0,023 0,088

0,028 0,024 0,022 0,084

0,026 0,025 0,023 0,077

0,026 0,024 0,023 0,075

0,028 0,027 0,023 0,073

0,026 0,023 0,023 0,072

0,027 0,023 0,023 0,075

((.25*x + .75)*x - 1.5)*x – 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,1

0,2

0,3

0,4

0,5

0,6

Numexpr

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

sin(x)**2+cos(x)**2

T
im

e
 (

s
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

Numexpr (detail)

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

T
im

e
 (

s
)

numexpr with 16 (logical) cores

CPU bounded!

Numexpr Limitations

• Numexpr only implements element-wise
operations, i.e. ‘a*b’ is evaluated as:  
 
for i in range(N):	

 c[i] = a[i] * b[i]	

• In particular, it cannot deal with things like:	

for i in range(N):	

 c[i] = a[i-1] + a[i] * b[i]

First Take Away
Message

• Before spending too much time optimizing
by yourself make you a favor:  
 
Use the existing, powerful libraries out
there  

• It is pretty difficult to beat performance
professionals!

Optimal Containers for
Big Data

The Need for a Good
Data Container

• Too many times we are focused on
computing as fast as possible	

• But we have seen how important data
access is	

• Hence, having an optimal data structure is
critical for getting good performance
when processing very large datasets

No Silver Bullet

• Unfortunately, there is not (and probably
will never be) a fit-all data container	

• We need to make our mind to the fact
that we need to choose the ‘optimal’
container for our case

Plenty of Data
Containers Out There
• In-Memory:	

• Python: list, tuple, dict, set, heap,
queue…	

• NumPy: multidim arrays, structured
arrays	

• pandas: Series, Dataframe, Panel	

• Out-of-memory: RDBMs, HDF5, NetCDF
and a huge lot more!

NumPy: A De Facto
Data Container

NumPy is the standard de facto in-memory
container for Big Data applications in the
Python universe

�����

������

������

���	�
�

��������	��
���������
����

NumPy Advantages

• Multidimensional data container	

• Efficient data access for many scenarios	

• Powerful weaponry for data handling	

• Efficient in-memory storage

Nothing Is Perfect

• The NumPy container is just great for
many use cases	

• However, it also has its own deficiencies:	

• Not efficient for appending data (so data
containers tend to be static)	

• Cannot deal with compressed data transparently	

• Limited disk-based data support 

Appending Data in
Large NumPy Objects

Copy!

New memory	

allocation

array to be enlarged final array object

new data to append

• Normally a realloc() syscall will not succeed	

• Both memory areas have to exist simultaneously

pandas & bcolz  
Overcoming some
NumPy Limitations

pandas

• An easy-to-use library for handling data
very efficiently	

• Data containers: Series, DataFrame, Panel	

• Dataframe is columnar storage for
tabular data and the most used one	

• Fast interface for persistent formats: CSV,
RDBMs, HDF5 and many more!	

Why Columnar?

• When querying tabular data, only the
interesting data is accessed	

• Less I/O required

In-Memory Row-Wise Table	

(Structured NumPy array)

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)	

Actual Data Read: N * 64 bytes (cache line)

}N rows

In-Memory Column-Wise Table	

(pandas, bcolz)

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)	

Actual Data Read: N * 4 bytes (Int32)

}N rows

Why NumPy queries are slow when
compared with pandas or bcolz (at least in
modern computers)?

Time To Answer
Pending Question #2

Because NumPy structured arrays are row-wise

bcolz

• Columnar, chunked, compressed data
containers for Python	

• Offers carray (homogeneous) and ctable
(tabular) container flavors	

• Implements fast iterators over the
containers, supporting query semantics	

• Uses the fast Blosc compressor under the
hood

Why Chunking?

• Chunking means more difficulty handling
data, so why bother?	

• Efficient enlarging and shrinking	

• On-flight compression possible

Copy!

Array to be  
 enlarged

Final array  
 object

Data to append
New memory 

 allocation
• Both memory areas have to exist simultaneously

Appending Data in NumPy

Appending Data in bcolz
Final carray object

chunk 1

chunk 2

new chunk(s)

carray to be enlarged

chunk 1

chunk 2

data to append

X

Compress

• Only a compression operation on new data is required

Why Compression (I)?

Compressed Dataset

Original Dataset

3x more data

More data can be stored in the same amount of media

Why Compression (II)?
Less data needs to be transmitted to the CPU

Disk or Memory Bus

Decompression

Disk or Memory (RAM)

CPU Cache

Original  
 Dataset

Compressed 
 Dataset

Transmission + decompression faster than direct transfer?

Blosc: Compressing Faster
Than Memory Speed

How Blosc Works

Blocking technique

at work!Attr: Valentin Haenel

Why the overhead of compression is so
little (if any)?

Time To Answer
Pending Question #3

Because Blosc can (de)compress faster than memcpy

Streaming Analytics with bcolz

bcolz container	

(disk or memory)

iter(), iterblocks(),  
where(), whereblocks(),	

__getitem__()

map(), filter(),	

 groupby(), sortby(),	

reduceby(),  
join()

bcolz 
 iterators/filters	

with blocking

itertools,	

PyToolz,	

CyToolz

Final Take Away
Message for Today

• Large datasets are tricky to manage, so:  
 
Look for the optimal containers for
your data  

• Spending some time choosing your
appropriate data container can be a big
time saver in the long run

Summary

• Nowadays you should be aware of the
memory hierarchy for getting good
performance	

• Leverage existing memory-efficient
libraries for performing computations
optimally	

• Use the appropriate data containers for
your different use cases

!

!

Questions?	

!

@FrancescAlted	

francesc@blosc.org

mailto:francesc@blosc.org

What’s Next

In the following exercises we will:	

• Experiment with the numexpr library, and
how it scales in a multicore machine	

• Learn when your problem is CPU-
bounded or memory-bounded	

• Do some queries on very large datasets
by using NumPy, pandas and bcolz

The ‘Big Iron’ Machine
for the Exercises

Four ‘blades’ like this one:

For a grand total of 48 physical cores!

