The Starving CPU
Problem

- OF =
How | Learned to Stop Worrying about CPU Speed
and Love Memory Access

Francesc Alted
Freelance Trainer And Developer

Advanced Scientific Programming in Python, Split (Croatia)
September 11,2014



Overview

® Motivation

® [he Data Access Issue

® Why Modern CPUs Are Starving
® Why Caches!

® Techniques For Fighting Data Starvation

® Optimal Containers for Big Data



Motivation
- Or -
Why CPU Speed Is Not
The Holy Grail Any Longer,

but still can help saving the day
(although in an unexpected way!)



The MovieLens Dataset

http://www.grouplens.org/datasets/movielens/

® Datasets for movie ratings

® Different sizes: 100K, I M, I0M ratings (the
|OM will be used in benchmarks ahead)

® [he datasets were collected over various
periods of time


http://www.grouplens.org/datasets/movielens/

Interactive Session
Starts

Materials in:
https://github.com/Blosc/movielens-bench

Look for this IPython notebook:
querying-assp | 4.ipynb

Based on previous work by Greg Reda:
http://www.gregreda.com/2013/10/26/
using-pandas-on-the-movielens-dataset/



https://github.com/Blosc/movielens-bench
http://www.gregreda.com/2013/10/26/using-pandas-on-the-movielens-dataset/

Query Performance
(old laptop)

numpy

~
N

bcolz (memory, nocompr)

bcolz (memory, compr)

pandas numexpr

pandas native

- Compression leads to slightly better query speeds (5% faster)
» Using numexpr really accelerates queries a lot

Note: all computations use a single thread



bcolz Storage Wins
(MovielLens Dataset)

Size of the datasets 1m

BN size (MB)

©
=3
Q.
job)
wn
@
N
@
sy
(e n]
(=2
@D
(o]
@D
-
(e n]
@D
-
N
(e n]
-
I
(e n]
-
(=2 ]
(e n]

- Compressed bcolz allows for |5x win wrt. pandas
- Compression is typically better for larger datasets (exercises)



Query times for MovielLens 1m

| E 5 : : — tl'ime (sec) |

ey [ -~~~

bcolz (memory, nocompr)_ . | . |
ootz enory. cowr) [
SN [ S —

panias navrve [
O I d I t ’ .BB 0 ‘82 8 .94 0 ‘86 0 68 e .lB 0 ‘12 8 .ld 0 ‘16 0 i8

‘Big lron’
ey [
vcotz menory . noconer) [
SUNTIT I E— S — — )|
pandas nneor [

paas v v I

8.008 68.682 6.04 8.86 6.08 8.16 8.12

_________________________________________________________________________________________

Query times for MovielLens 1m (Big Iron)




|Om records in Big Iron

Query times for MovielLens 10m (Big Iron)

numpy
bcolz (memory, nocompr)

bcolz (memory, compr)

pandas native

S1ze of the datasets 10m

bcolz (compr)

pandas

@

506 1860 1560

BN time (sec)

BN size (MB)

2000

1 A

-



Some Questions

. Why numexpr can accelerate computations
on pandas, when both packages are
provided with computational kernels in C?

2. Why NumPy queries are slow when

compared with pandas or bcolz (at least in
modern computers)!?

3. Why the overhead of compression is so
little (and negative in modern computers)?

Short answer: by making a more efficient
use of the memory



The Starving CPU
Problem



The Starving CPU
Problem

® Current CPUs typically stay bored, doing
nothing most of the time

® Why so!

® Because they are basically waiting for
data



1000

nanoseconds

o
—

0.01

-y
0
0]
N

Memory Access [ime
vs CPU Cycle Time

o
8
® Memory Access Time ¢ CPU Cycle Time A Multi Core Effective Cycle Time

2002 -~

-
-‘--_-‘-— —
P Yl -
Q - QQ - et
e
S 9
@
O
o
v ——b
T
A 4
9
Q\Q
Y Y Y Y Y Y Y Y Y Y Y
-d -l -d -y - -d -t -l N N N
w0 (o] w0 w0 (] (o] (o] (] o o o
(o] (e0] (o0) ({e) ({e] (] ({e] ({e] o o o
(4] ~ w0 — w (4} ~J ({e] — w ($)}



Quote Back in 1993

“We continue to benefit from tremendous increases in the raw speed of
microprocessors without proportional increases in the speed of memory.
This means that 'good' performance is becoming more closely tied to
good memory access patterns, and careful re-use of operands.”

“No one could afford a memory system fast enough to satisfy every
(memory) reference immediately, so vendors depends on caches,
interleaving, and other devices to deliver reasonable memory

performance.”

— Kevin Dowd, after his book “High Performance Computing”,
O'Rellly & Associates, Inc, 1993



Quote Back in 1996

“Across the industry, today’s chips are largely able to execute code
faster than we can feed them with instructions and data. There are no
longer performance bottlenecks in the floating-point multiplier or in
having only a single integer unit. The real design action is in memory
subsystems— caches, buses, bandwidth, and latency.”

“Over the coming decade, memory subsystem design will be the only
important design issue for microprocessors..”

— Richard Sites, after his article “It's The Memory, Stupid!”,
Microprocessor Report, 10(10),1996



Book in 2009

-l\t MORGANNCLAYPOOL PUBLISHERS

The Memory System

You Can’t Avoid It,
You Can’t Ignore It,
You Can’t Fake It

Bruce Jacob

SYNTHESIS LECTURES ON
CoMPUTER ARCHITECTURE

Mark D. Hill, Series Editor




The Status of CPU
Starvation in 2014

® Memory latency is much slower (between
|00x and 250x) than processors.

® Memory bandwidth is improving at a
better rate than memory latency, but it is
also lagging behind processors (between

30x and 100x).



CPU Caches to the

Rescue

® Vendors realized the Starving CPU
problem and responded
implementing caches in CPUs

® CPU cache latency and throughput
are much better than memory

® However: the faster they run the
smaller they must be



CPU Cache Evolution

Up to end 80’s  90’s and 2000’s 2010’s

I R

Solid state disk




When CPU Caches Are
Effective!?

® Mainly in a couple of scenarios:

® Time locality: when the dataset is
reused

® Spatial locality: when the dataset is
accessed sequentially



Time Locality

Parts of the dataset are reused

Cache

Memory (C array)



Spatial Locality

Dataset is accessed sequentially

Good!

QO|®|®| Linel
QO ® @®|Line?2
Bad Cache

Memory (C array)



The Blocking Technique

When accessing disk or memory, get a contiguous block that fits
in CPU cache, operate upon it and reuse it as much as possible.

Dataset A

C = A <oper>B

Dataset B

CPU Dataset C

Use this extensively to leverage
spatial and temporal localities



Time To Answer
Pending Question #|

lens.query("(title == 'Tom and Huck (1995)') & (rating == 5)”)
VS
lens[(lens['title'] == 'Tom and Huck (1995)') & (lens['rating'] == 5)]

Query times for MovielLens 1m

BN time (sec)
numpy

bcolz (memory, nocompr)

bcolz (memory, compr)

pandas native

6e 8.62 6.64 8.86 8.68 6.16 8.12 - 8.16



Computing "a*b+c" with NumPy. Temporaries goes to memory.

— el T
cache
7

¢ a*b+c

memory

a*b



Computing "a*b+c" with Numexpr. Temporaries in memory are avoided.

cache

a b C a*b+c
memory
. A11€
ng tec\‘“‘qu
Q
B\OC\ \NO"\("

a*b at



Multithreaded numexpr



Time (s)

0,16
0,14
0,12
0,1
0,08
0,06
0,04
0,02
0

numexpr Allows
Multithreading for Free

numexpr with 16 (logical) cores

B .25"x*3 + .75"x*2 - 1.5"°x — 2
W ((.25"x + .75)*x - 1.5)*x — 2
X

"I"“IIIIIIII

12345067 8 910111213141516



Time (s)

0,6
0,5
0,4
0,3
0,2

0,1
0

Transcendental
Functions

numexpr with 16 (logical) cores

1234567 8 910111213141516

W .25"°X**3 + .75"°x™2 -1.5"x - 2
W ((.29"x +.79)*x - 1.9)"X — 2

X
M sin(x)**2+cos(x)**2

CPU bounded!



Numexpr Limitations

® Numexpr only implements element-wise
operations, i.e. ‘a*b’ is evaluated as:

for 1 1n range(N):
c[i] = a[i] * b[i]
® |n particular, it cannot deal with things like:

for 1 1n range(N):

c[i1] = a[1-1] + a[1] * b[1]



First Take Away
Message

® Before spending too much time optimizing
by yourself make you a favor:

Use the existing, powerful libraries out
there

® |t is pretty difficult to beat performance
professionals!



Optimal Containers for
Big Data



The Need for a Good
Data Container

® Joo many times we are focused on
computing as fast as possible

® But we have seen how important data
access Is

® Hence, having an optimal data structure is
critical for getting good performance
when processing very large datasets



No Silver Bullet

® Unfortunately, there is not (and probably
will never be) a fit-all data container

® VWe need to make our mind to the fact
that we need to choose the ‘optimal’
container for our case



Plenty of Data
Containers Out There

® |n-Memory:

® Python: list, tuple, dict, set, heap,
queue...

® NumPy: multidim arrays, structured
arrays

® pandas: Series, Dataframe, Panel

® Out-of-memory: RDBMs, HDF5, NetCDF
and a huge lot more!



NumPy: A De Facto
Data Container

NumPy is the standard de facto in-memory
container for Big Data applications in the
Python universe



“Ef\? <A NVIDIA. % TRTo
N e SCIKICS-Image
. <

j image processing in python

PyOpenCL

cny| StatsModlels
SM Statistics in Pyt!/\om

CONTINUUM

ANALYTICS




NumPy Advantages

Multidimensional data container
Efficient data access for many scenarios
Powerful weaponry for data handling

Efficient in-memory storage



Nothing Is Perfect

® The NumPy container is just great for
many use cases

® However, it also has its own deficiencies:

® Not efficient for appending data (so data
containers tend to be static)

® Cannot deal with compressed data transparently

® |imited disk-based data support



Appending Data in
Large NumPy Objects

COP)"

new data to append / New memory

allocation

* Normally a realloc() syscall will not succeed
* Both memory areas have to exist simultaneously



pandas & bcolz

Overcoming some
NumPy Limitations



pandas

® An easy-to-use library for handling data
very efficiently

® Data containers: Series, DataFrame, Panel

® Dataframe is columnar storage for
tabular data and the most used one

® Fast interface for persistent formats: CSV,
RDBMs, HDF5 and many more!



Why Columnar!

® VWhen querying tabular data, only the
interesting data is accessed

® Less |/O required



In-Memory Row-Wise Table
(Structured NumPy array)

Interesting column

¢

swmg W2 Fowst L - N rows

v

Interesting Data: N * 4 bytes (Int32)
Actual Data Read: N * 64 bytes (cache line)



In-Memory Column-Wise Table
(pandas, bcolz)

Interesting column

¥
Swng I Fowst Swng

N rows

v

Interesting Data: N * 4 bytes (Int32)
Actual Data Read: N * 4 bytes (Int32)



Time To Answer
Pending Question #2

Why NumPy queries are slow when
compared with pandas or bcolz (at least in
modern computers)?

Because NumPy structured arrays are row-wise



bcolz

Columnar, chunked, compressed data
containers for Python

Offers carray (homogeneous) and ctable
(tabular) container flavors

Implements fast iterators over the
containers, supporting query semantics

Uses the fast Blosc compressor under the
hood



Why Chunking!?

® Chunking means more difficulty handling
data, so why bother?

® Efficient enlarging and shrinking

® On-flight compression possible



Appending Data in NumPy

S—

e

Copy!

New memory

allocation

* Both memory areas have to exist simultaneously



Appending Data in bcolz

carray to be enlarged Final carray object

Compress

SRS
LEmers
| aaowme

Only a compression operation on new data is required



Why Compression (1)?

More data can be stored in the same amount of media

3x more data



Why Compression (I1)?

Less data needs to be transmitted to the CPU

Disk or Memory Bus

Transmission + decompression faster than direct transfer?



Blosc: Compressing Faster

Than Memory Speed

Speed (MB/s)

35000

Decompression speed (256.0 MB, 8 bytes, 19 bits)

30000}

25000}

20000}

15000

10000}

5000¢-

1 threads
2 threads
3 threads |
4 threads
5 threads
6 threads
7 threads
8 threads

>B

9 threads
10 threads
11 threads

12 threads

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SN
(1
~H
o]

Compresssion ratio



How Blosc Works
LTI

Block

[ —— Shuffle ]

[ ] ] Compress O
N [ . tec\‘“\que
: C\(\“ \
Attr: Valentin Haenel B\o \No\‘\‘



Time To Answer
Pending Question #3

Why the overhead of compression is so
little (if any)!?

Because Blosc can (de)compress faster than memcpy



Streaming Analytics with bcolz

itertools,
Py Toolz,
CyToolz

4

bcolz
iterators/filters
with blocking

ﬁ bcolz container
(disk or memory)




Final Take Away
Message for Today

® | arge datasets are tricky to manage, so:

Look for the optimal containers for
your data

® Spending some time choosing your
appropriate data container can be a big
time saver in the long run



Summary

® Nowadays you should be aware of the
memory hierarchy for getting good
performance

® | everage existing memory-efficient
libraries for performing computations
optimally

® Use the appropriate data containers for
your different use cases



Questions?

@FrancescAlted
francesc(@blosc.org



mailto:francesc@blosc.org

What’s Next

In the following exercises we will:

® Experiment with the numexpr library, and
how it scales in a multicore machine

® | earn when your problem is CPU-
bounded or memory-bounded

® Do some queries on very large datasets
by using NumPy, pandas and bcolz



The ‘Big Iron” Machine
for the Exercises

Four ‘blades’ like this one:

Core | Core| Core|Core] Core|Core Core|Core] Core|Core|Core]Core
0 1 2 3 4 5 6 7 8 9 0.5 1

Shared L3

Shared L3

] e
r_ r_
[Comome]  [mayoms

For a grand total of 48 physical cores!



