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Motivation	


- or -  

Why CPU Speed Is Not	


 The Holy Grail Any Longer,  

but still can help saving the day	


(although in an unexpected way!)



The MovieLens Dataset

• Datasets for movie ratings	



• Different sizes: 100K, 1M, 10M ratings (the 
10M will be used in benchmarks ahead)	



• The datasets were collected over various 
periods of time

http://www.grouplens.org/datasets/movielens/

http://www.grouplens.org/datasets/movielens/


Interactive Session 
Starts
Materials in:  

https://github.com/Blosc/movielens-bench

Look for this IPython notebook:	


querying-assp14.ipynb

Based on previous work by Greg Reda:	


http://www.gregreda.com/2013/10/26/ 

using-pandas-on-the-movielens-dataset/

https://github.com/Blosc/movielens-bench
http://www.gregreda.com/2013/10/26/using-pandas-on-the-movielens-dataset/


Query Performance 
(old laptop) 

• Compression leads to slightly better query speeds (5% faster)	


• Using numexpr really accelerates queries a lot

Note: all computations use a single thread



bcolz Storage Wins 
(MovieLens Dataset)

• Compressed bcolz allows for 15x win wrt. pandas	


• Compression is typically better for larger datasets (exercises)



Old laptop

‘Big Iron’
vs



10m records in Big Iron



Some Questions
1. Why numexpr can accelerate computations 

on pandas, when both packages are 
provided with computational kernels in C?	



2. Why NumPy queries are slow when 
compared with pandas or bcolz (at least in 
modern computers)?	



3. Why the overhead of compression is so 
little (and negative in modern computers)?	



Short answer: by making a more efficient 
use of the memory



The Starving CPU 
Problem



The Starving CPU 
Problem

• Current CPUs typically stay bored, doing 
nothing most of the time	



• Why so?	



• Because they are basically waiting for 
data



Memory Access Time 
vs CPU Cycle Time



Quote Back in 1993
“We continue to benefit from tremendous increases in the raw speed of 
microprocessors without proportional increases in the speed of memory.  
This means that 'good' performance is becoming more closely tied to 
good memory access patterns, and careful re-use of operands.”	


!
“No one could afford a memory system fast enough to satisfy every 
(memory) reference immediately, so vendors depends on caches, 
interleaving, and other devices to deliver reasonable memory 
performance.”	


!

– Kevin Dowd, after his book “High Performance Computing”, 
O’Reilly & Associates, Inc, 1993



Quote Back in 1996

“Across the industry, today’s chips are largely able to execute code 
faster than we can feed them with instructions and data.  There are no 
longer performance bottlenecks in the floating-point multiplier or in 
having only a single integer unit.  The real design action is in memory 
subsystems— caches, buses, bandwidth, and latency.”	


!
“Over the coming decade, memory subsystem design will be the only 
important design issue for microprocessors..”	


!

– Richard Sites, after his article “It’s The Memory, Stupid!”, 
Microprocessor Report, 10(10),1996



Book in 2009



The Status of CPU 
Starvation in 2014

• Memory latency is much slower (between 
100x and 250x) than processors.	



• Memory bandwidth is improving at a 
better rate than memory latency, but it is 
also lagging behind processors (between 
30x and 100x).



CPU Caches to the 
Rescue

• Vendors realized the Starving CPU 
problem and responded 
implementing caches in CPUs	



• CPU cache latency and throughput 
are much better than memory	



• However: the faster they run the 
smaller they must be



CPU Cache Evolution
Up to end 80’s 90’s and 2000’s 2010’s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to 
the CPU) are faster but have reduced 
capacities and are best suited for per-
forming computations; higher-level 
caches are slower but have higher ca-
pacity and are best suited for storage 
purposes.

Figure 1 shows the evolution of 
this hierarchical memory model over 
time. The forthcoming (or should I 
say the present?) hierarchical model 
includes a minimum of six memory 
levels. Taking advantage of such a 
deep hierarchy isn’t trivial at all, and 
programmers must grasp this fact 
if they want their code to run at an  
acceptable speed.

Techniques to Fight  
Data Starvation 
Unlike the good old days when the 
processor was the main bottleneck, 
memory organization has now be-
come the key factor in optimization. 
Although learning assembly language 
to get direct processor access is (rela-
tively) easy, understanding how the 
hierarchical memory model works—
and adapting your data structures 
accordingly—requires considerable 
knowledge and experience. Until we 
have languages that facilitate the de-
velopment of programs that are aware 

of memory hierarchy (for an example 
in progress, see the Sequoia project 
at www.stanford.edu/group/sequoia), 
programmers must learn how to 
deal with this problem at a fairly low 
level.4 

There are some common techniques 
to deal with the CPU data-starvation 
problem in current hierarchical mem-
ory models. Most of them exploit the 
principles of temporal and spatial  
locality. In temporal locality, the target 
dataset is reused several times over 
a short period. The first time the 
dataset is accessed, the system must 
bring it to cache from slow memory; 
the next time, however, the processor 
will fetch it directly (and much more 
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In 
this case, circuits are designed to fetch 
memory elements that are clumped 
together much faster than if they’re 
dispersed. In addition, specialized 
circuitry (even in current commodity 
hardware) offers prefetching—that is, 
it can look at memory-access patterns 
and predict when a certain chunk of 
data will be used and start to trans-
fer it to cache before the CPU has  
actually asked for it. The net result is 
that the CPU can retrieve data much 
faster when spatial locality is properly 
used.

Programmers should exploit the op-
timizations inherent in temporal and 
spatial locality as much as possible. 
One generally useful technique that 
leverages these principles is the block-
ing technique (see Figure 2). When 
properly applied, the blocking tech-
nique guarantees that both spatial and 
temporal localities are exploited for 
maximum benefit.

Although the blocking technique 
is relatively simple in principle, it’s 
less straightforward to implement 
in practice. For example, should the 
basic block fit in cache level one, 
two, or three? Or would it be bet-
ter to fit it in main memory—which 
can be useful when computing large, 
disk-based datasets? Choosing from 
among these different possibilities 
is difficult, and there’s no substitute 
for experimentation and empirical 
analysis.

In general, it’s always wise to use 
libraries that already leverage the 
blocking technique (and others) for 
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is 
a virtual machine written in Python 
and C that lets you evaluate poten-
tially complex arithmetic expressions 
over arbitrarily large arrays. Using the 
blocking technique in combination 

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current 
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade: 
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.
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When CPU Caches Are 
Effective?

!

• Mainly in a couple of scenarios:	



• Time locality: when the dataset is 
reused	



• Spatial locality: when the dataset is 
accessed sequentially



Time Locality



Spatial Locality



The Blocking Technique















Use this extensively to leverage 
spatial and temporal localities

When accessing disk or memory, get a contiguous block that fits 
in CPU cache, operate upon it and reuse it as much as possible.



Time To Answer 
Pending Question #1

lens.query("(title	
  ==	
  'Tom	
  and	
  Huck	
  (1995)')	
  &	
  (rating	
  ==	
  5)”)	
  
vs	
  

lens[(lens['title']	
  ==	
  'Tom	
  and	
  Huck	
  (1995)')	
  &	
  (lens['rating']	
  ==	
  5)]
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   









Blocking technique 

at work!



Multithreaded numexpr 



numexpr Allows 
Multithreading for Free

Numexpr

Page 3

.25*x**3 + .75*x**2 - 1.5*x – 2x sin(x)**2+cos(x)**2
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numexpr with 16 (logical) cores

Memory bounded!



Transcendental 
Functions

Numexpr
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Numexpr Limitations

• Numexpr only implements element-wise 
operations, i.e.  ‘a*b’ is evaluated as:  
 
for i in range(N):	

    c[i] = a[i] * b[i]	



• In particular, it cannot deal with things like:	


for i in range(N):	

    c[i] = a[i-1] + a[i] * b[i]



First Take Away  
Message

• Before spending too much time optimizing 
by yourself make you a favor:  
 
Use the existing, powerful libraries out 
there  

• It is pretty difficult to beat performance 
professionals!



Optimal Containers for 
Big Data



The Need for a Good 
Data Container

• Too many times we are focused on 
computing as fast as possible	



• But we have seen how important data 
access is	



• Hence, having an optimal data structure is 
critical for getting good performance 
when processing very large datasets



No Silver Bullet

• Unfortunately, there is not (and probably 
will never be) a fit-all data container	



• We need to make our mind to the fact 
that we need to choose the ‘optimal’ 
container for our case



Plenty of Data 
Containers Out There
• In-Memory:	



• Python: list, tuple, dict, set, heap, 
queue…	



• NumPy: multidim arrays, structured 
arrays	



• pandas: Series, Dataframe, Panel	



• Out-of-memory: RDBMs, HDF5, NetCDF 
and a huge lot more!



NumPy: A De Facto 
Data Container

NumPy is the standard de facto in-memory 
container for Big Data applications in the 
Python universe
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NumPy Advantages

• Multidimensional data container	



• Efficient data access for many scenarios	



• Powerful weaponry for data handling	



• Efficient in-memory storage



Nothing Is Perfect

• The NumPy container is just great for 
many use cases	



• However, it also has its own deficiencies:	



• Not efficient for appending data (so data 
containers tend to be static)	



• Cannot deal with compressed data transparently	



• Limited disk-based data support 



Appending Data in 
Large NumPy Objects

Copy!

New memory	


allocation

array to be enlarged final array object

new data to append

• Normally a realloc() syscall will not succeed	


• Both memory areas have to exist simultaneously



pandas & bcolz  
Overcoming some 
NumPy Limitations



pandas

• An easy-to-use library for handling data 
very efficiently	



• Data containers: Series, DataFrame, Panel	



• Dataframe is columnar storage for 
tabular data and the most used one	



• Fast interface for persistent formats: CSV, 
RDBMs, HDF5 and many more!	





Why Columnar?

• When querying tabular data, only the 
interesting data is accessed	



• Less I/O required



In-Memory Row-Wise Table	


(Structured NumPy array)

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)	


Actual Data Read: N * 64 bytes (cache line)

}N rows



In-Memory Column-Wise Table	


(pandas, bcolz)

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)	


Actual Data Read: N * 4 bytes (Int32)

}N rows



Why NumPy queries are slow when 
compared with pandas or bcolz (at least in 
modern computers)?

Time To Answer 
Pending Question #2

Because NumPy structured arrays are row-wise



bcolz

• Columnar, chunked, compressed data 
containers for Python	



• Offers carray (homogeneous) and ctable 
(tabular) container flavors	



• Implements fast iterators over the 
containers, supporting query semantics	



• Uses the fast Blosc compressor under the 
hood



Why Chunking?

• Chunking means more difficulty handling 
data, so why bother?	



• Efficient enlarging and shrinking	



• On-flight compression possible



Copy!

Array to be  
 enlarged

Final array  
 object

Data to append
New memory 

 allocation
• Both memory areas have to exist simultaneously

Appending Data in NumPy



Appending Data in bcolz
Final carray object

chunk 1

chunk 2

new chunk(s)

carray to be enlarged

chunk 1

chunk 2

data to append

X

Compress

• Only a compression operation on new data is required



Why Compression (I)?

Compressed Dataset

Original Dataset

3x more data

More data can be stored in the same amount of media



Why Compression (II)?
Less data needs to be transmitted to the CPU

Disk or Memory Bus

Decompression

Disk or Memory (RAM)

CPU Cache

Original  
 Dataset

Compressed 
 Dataset

Transmission + decompression faster than direct transfer?



Blosc: Compressing Faster 
Than Memory Speed



How Blosc Works

Blocking technique 

at work!Attr:  Valentin Haenel



Why the overhead of compression is so 
little (if any)?

Time To Answer 
Pending Question #3

Because Blosc can (de)compress faster than memcpy



Streaming Analytics with bcolz

bcolz container	


(disk or memory)

iter(), iterblocks(),  
where(), whereblocks(),	



__getitem__()

map(), filter(),	


 groupby(), sortby(),	



reduceby(),  
join()

bcolz 
 iterators/filters	


with blocking

itertools,	


PyToolz,	


CyToolz



Final Take Away 
Message for Today

• Large datasets are tricky to manage, so:  
 
Look for the optimal containers for 
your data  

• Spending some time choosing your 
appropriate data container can be a big 
time saver in the long run



Summary

• Nowadays you should be aware of the 
memory hierarchy for getting good 
performance	



• Leverage existing memory-efficient 
libraries for performing computations 
optimally	



• Use the appropriate data containers for 
your different use cases



!

!

Questions?	


!

@FrancescAlted	


francesc@blosc.org

mailto:francesc@blosc.org


What’s Next

In the following exercises we will:	



• Experiment with the numexpr library, and 
how it scales in a multicore machine	



• Learn when your problem is CPU-
bounded or memory-bounded	



• Do some queries on very large datasets 
by using NumPy, pandas and bcolz



The ‘Big Iron’ Machine 
for the Exercises

Four ‘blades’ like this one:

For a grand total of 48 physical cores!


