
Software carpentry
From theory to practice: Python tools

Pietro Berkes, Enthought UK

Outline
}  Ouverture

}  The agile programming cycle, scientific-style

}  Testing scientific code

}  Debugging

}  Optimization and profiling

}  Other agile tools and concepts:
}  Coverage
}  Continuous integration

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Modern programming practices and science

Software carpentry: Python tools

}  Researchers and scientific software developers write software
daily, but few have been trained to do so

}  Good programming practices make a BIG difference

}  We can learn a lot from the development methods developed
for commercial and open source software in the past 20 years

Pietro Berkes, Sept 2014

Requirements for scientific programming
}  Main requirement: scientific code must be error free

}  Scientist time, not computer time is the bottleneck
}  Being able to explore many different models and statistical

analyses is more important than a very fast single approach

}  Reproducibility and re-usability:
}  Every scientific result should be independently reproduced at

least internally before publication (DFG, 1999)
}  No need for somebody else to re-implement your algorithm
}  Increasing pressure for making the source code used in

publications available online (especially for theoretical papers)

Software carpentry: Python tools Pietro Berkes, Sept 2014

Effect of software bugs in science

Software carpentry: Python tools

fre
qu

en
cy

bug severity

oops, wrong
labels!

need to send
errata corrige

end of career

Pietro Berkes, Sept 2014

Software bugs in research are a serious business

Software carpentry: Python tools

Retractions due to software bugs
Retractions due to software bugs

Retractions due to software bugs

Science, Dec 2006: 5 high-profile retractions (3x Science, PNAS,
J. Mol. Biol.) because ”an in-house data reduction program
introduced a change in sign for anomalous differences”

PLoS Comp Bio, July 2007: retraction
because “As a result of a bug in the
Perl script used to compare
estimated trees with true trees, the
clade confidence measures were
sometimes associated with the
incorrect clades.”

Pietro Berkes, Sept 2014

This includes the industry

Software carpentry: Python tools

NYT, 2 August 2012

Source: Google Finance

Pietro Berkes, Sept 2014

Pietro Berkes, Sept 2014 Software carpentry: Python tools

The agile programming cycle

The agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest
coverage

pdb

cProfile + runSnake
line_profiler
timeit

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Python tools for agile programming
}  There are many tools, based on command line or graphical

interface

}  I’ll present:
}  Python standard “batteries included” tools
}  mostly, no graphical interface necessary
}  magic commands for ipython

}  Alternatives and cheat sheets are on the Python school wiki

Pietro Berkes, Sept 2014 Software carpentry: Python tools

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest
coverage.py

pdb

Pietro Berkes, Sept 2014 Software carpentry: Python tools

cProfile + runSnake
line_profiler
timeit

Pietro Berkes, Sept 2014 Software carpentry: Python tools

unittest full immersion

Testing in agile development
}  Formal software testing has become one of the most

important parts of modern software development

}  Tests become part of the programming cycle and are
automated:
}  Write test suite in parallel with your code
}  External software runs the tests and provides reports and

statistics

test_choice (__main__.TestSequenceFunctions) ... ok
test_sample (__main__.TestSequenceFunctions) ... ok
test_shuffle (__main__.TestSequenceFunctions) ... ok

Ran 3 tests in 0.110s
OK

Software carpentry: Python tools Pietro Berkes, Sept 2014

Testing benefits
}  Tests are the only way to trust your code

}  Faster development:
}  Bugs are always pinpointed
}  Avoids starting all over again when fixing one part of the code

causes a bug somewhere else

}  Leads to better code and optimization: code can change, and
consistency is assured by tests

Software carpentry: Python tools Pietro Berkes, Sept 2014

Save your future self some trouble

Pietro Berkes, Sept 2014 Software carpentry: Python tools

class DataManager(object):
 # ...
 def remove_data(self, data):
 """ Remove the given data object. """

 for idx, item in enumerate(self._data):
 if data is item:
 self._data[idx:idx+1] = []
 break
 else:
 raise ValueError('Data item not in data manager’)

Tests to the rescue

Pietro Berkes, Sept 2014 Software carpentry: Python tools

class DataManager(object):
 # ...
 def remove_data(self, data):
 """ Remove the given data object. ""”

 self._data.remove(data)

Right?
Wrong!
==
ERROR: test_remove_ndarray_from_datamanager
(....model.tests.test_data_manager_commands.TestDataManagerCommands)
--
Traceback (most recent call last):
 File "/.../model/tests/test_data_manager_commands.py", line 64, in
test_remove_ndarray_from_datamanager
 data_manager.remove_data(np_array)
 ...
ValueError: The truth value of an array with more than one element is
ambiguous. Use a.any() or a.all()

Testing with Python
}  unittest:

}  Has been part of the Python standard library since v. 2.1
}  Interface a bit awkward (camelCase methods…), but since Python

2.7 it is at the level of other modern testing tools

}  Alternatives:
}  nosetests (often used just to run unittests)
}  py.test (uncommon)

Software carpentry: Python tools Pietro Berkes, Sept 2014

Test suites in Python: unittest
}  Writing tests with unittest is simple enough:

}  Each test case is a subclass of unittest.TestCase
}  Each test unit is a method of the class, whose name starts with

‘test’
}  Each unit tests one aspect of your code, and checks that it

behaves correctly using “assertions”. An exception is raised if it
does not work as expected.

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Anatomy of a TestCase

import unittest

class FirstTestCase(unittest.TestCase):

 def test_truisms(self):
 """All methods beginning with ’test’ are executed"""
 self.assertTrue(True)
 self.assertFalse(False)

 def test_equality(self):
 """Docstrings are printed during executions
 of the tests in some test runners"""
 self.assertEqual(1, 1)

if __name__ == '__main__':
 unittest.main()

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Create new file, test_something.py:

TestCase.assertSomething

}  TestCase defines utility methods to check that some
conditions are met, and raise an exception otherwise

}  Check that statement is true/false:
assertTrue('Hi'.islower()) => fail
assertFalse('Hi'.islower()) => pass

}  Check that two objects are equal:
assertEqual(2+1, 3) => pass
assertEqual([2]+[1], [2, 1]) => pass
assertNotEqual([2]+[1], [2, 1]) => fail

assertEqual can be used to compare all sorts of objects:
numbers, lists, tuples, dicts, sets, frozensets, and unicode

Software carpentry: Python tools Pietro Berkes, Sept 2014

Floating point equality

}  Floating point numbers are rarely equal (try 1.1 + 2.2).
When developing numberical code, we have to allow for
machine precision errors.

}  Check that two numbers are equal up to a given precision:
assertAlmostEqual(x, y, places=7)

}  places is the number of decimal places to use:
assertAlmostEqual(1.121, 1.12, 2) => pass
assertAlmostEqual(1.121, 1.12, 3) => fail

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Testing error control

Software carpentry: Python tools

}  Check that an exception is raised:

with self.assertRaises(SomeException):
 do_something()
 do_something_else()

}  For example:

with self.assertRaises(ValueError):
 int('XYZ')

passes, because

int('XYZ')
ValueError: invalid literal for int() with base 10: 'XYZ'

Pietro Berkes, Sept 2014

Testing error control
}  Use the most specific exception class, or the test may pass

because of collateral damage:

 with self.assertRaises(IOError):
 file(1, 'r')

as expected, but

 with self.assertRaises(IOError):
 file(1, 'r')

Pietro Berkes, Sept 2014 Software carpentry: Python tools

=> fail

=> pass

TestCase.assertSomething

Software carpentry: Python tools

}  Many more “assert” methods:
(complete list at http://docs.python.org/library/unittest.html)

assertGreater(a, b) / assertLess(a, b)

assertRegexpMatches(text, regexp)
 verifies that regexp search matches text

assertIn(value, sequence)
 assert membership in a container

assertIsNone(value)
 verifies that value is None

assertIsInstance(obj, cls)
 verifies that an object is an instance of a class

assertItemsEqual(actual, expected)
 verifies equality of members, ignores order

assertDictContainsSubset(subset, full)
 tests whether the entries in dictionary full are a superset of those in subset

Pietro Berkes, Sept 2014

Testing with numpy arrays

Pietro Berkes, Sept 2014 Software carpentry: Python tools

class NumpyTestCase(unittest.TestCase):
 def test_equality(self):
 a = numpy.array([1, 2])
 b = numpy.array([1, 2])
 self.assertEqual(a, b)

E
==
ERROR: test_equality (__main__.NumpyTestCase)
--
Traceback (most recent call last):
 File "numpy_testing.py", line 8, in test_equality
self.assertEqual(a, b)
 File "/Library/Frameworks/Python.framework/Versions/6.1/lib/python2.6/
unittest.py", line 348, in failUnlessEqual
 if not first == second:
ValueError: The truth value of an array with more than one element is ambiguous.
Use a.any() or a.all()

--
Ran 1 test in 0.000s

FAILED (errors=1)

Testing with numpy arrays
}  numpy.testing defines appropriate function:
numpy.testing.assert_array_equal(x, y)
numpy.testing.assert_array_almost_equal(x, y,

 decimal=6)

}  If you need to check more complex conditions:
}  numpy.all(x): returns True if all elements of x are true

numpy.any(x): returns True is any of the elements of x is true
numpy.allclose(x, y, rtol=1e-05, atol=1e-08): returns
True if two arrays are element-wise equal within a tolerance; rtol
is relative difference, atol is absolute difference

}  combine with logical_and, logical_or, logical_not:
test that all elements of x are between 0 and 1
assertTrue(all(logical_and(x > 0.0, x < 1.0))

Software carpentry: Python tools Pietro Berkes, Sept 2014

How to run tests

Software carpentry: Python tools

}  Option 1: unittest.main() will execute all tests in all TestCase
classes in a file

if __name__ == '__main__':
 unittest.main()

}  Option 2: Execute all tests in one file
python -m unittest [-v] test_module

}  Option 3: Discover all tests in all subdirectories
python -m unittest discover
(or nosetests)

Pietro Berkes, Sept 2014

Basics of testing

Software carpentry: Python tools

}  What to test, and how?

}  At first, testing feels weird:
1)  It’s obvious that this code works
2) The tests are longer than the code
3) The test code is a duplicate of the real code

}  What does a good test looks like?

}  What should I test?

}  Anything specific to scientific code?

Pietro Berkes, Sept 2014

Basic structure of test

Software carpentry: Python tools

}  A good test is divided in three parts:
}  Given: Put your system in the right state for testing

}  Create objects, initialize parameters, define constants…
}  Define the expected result of the test

}  When: Execute the feature that you are testing
}  Typically one or two lines of code

}  Then: Compare outcomes with the expected ones
}  Set of assertions regarding the new state of your system

Pietro Berkes, Sept 2014

Test simple but general cases
}  Start with simple, general case

}  Take a realistic scenario for your code, try to reduce it to a simple example

}  Tests for ‘lower’ method of strings

class LowerTestCase(unittest.TestCase):

 def test_lower(self):
 # Given
 string = 'HeLlO wOrld'
 expected = 'hello world'

 # When
 output = string.lower()

 # Then
 self.assertEqual(output, expected)

Software carpentry: Python tools Pietro Berkes, Sept 2014

Test special cases and boundary conditions
}  Code often breaks in corner cases: empty lists, None, NaN, 0.0, lists

with repeated elements, non-existing file, …

}  This often involves making design decision: respond to corner case with
special behavior, or raise meaningful exception?

def test_empty_string(self):
 # Given
 string = ''
 expected = ''

 # When
 output = string.lower()

 # Then
 self.assertEqual(output, expected)

Software carpentry: Python tools

}  Other good corner cases for string.lower():
}  ‘do-nothing case’: string = 'hi'
}  symbols: string = '123 (!'

Pietro Berkes, Sept 2014

Common testing pattern
}  Often these cases are collected in a single test:

 def test_lower(self):
 # Given
 # Each test case is a tuple of (input, expected_result)
 test_cases = [('HeLlO wOrld', 'hello world'),
 ('hi', 'hi'),
 ('123 ([?', '123 ([?'),
 ('', '')]

 for string, expected in test_cases:
 # When
 output = string.lower()
 # Then
 self.assertEqual(output, expected)

Software carpentry: Python tools Pietro Berkes, Sept 2014

Fixtures

Software carpentry: Python tools

}  Tests require an initial state or test context in which they are
executed (the “Given” part), which needs to be initialized and
possibly cleaned up.

}  If multiple tests require the same context, this fixed context is
known as a fixture.

}  Examples of fixtures:
}  Creation of a data set at runtime
}  Loading data from a file or database
}  Creation of mock objects to simulate the interaction with

complex objects

Pietro Berkes, Sept 2014

setUp and tearDown

import unittest

class FirstTestCase(unittest.TestCase):

 def setUp(self):
 ""” setUp is called before every test """
 pass

 def tearDown(self):
 """ tearDown is called at the end of every test,
 even if the test raises an exception. """
 pass

 # ... all tests here ...

Software carpentry: Python tools Pietro Berkes, Sept 2014

Numerical fuzzing
}  Use deterministic test cases when possible

}  In most numerical algorithm, this will cover only over-
simplified situations; in some, it is impossible

}  Fuzz testing: generate random input
}  Outside scientific programming it is mostly used to stress-test

error handling, memory leaks, safety
}  For numerical algorithm, it is often used to make sure one covers

general, realistic cases
}  The input may be random, but you still need to know what to

expect
}  Make failures reproducible by saving or printing the random seed

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Numerical fuzzing – example
class VarianceTestCase(unittest.TestCase):

 def setUp(self):
 self.seed = int(numpy.random.randint(2**31-1))
 numpy.random.seed(self.seed)
 print 'Random seed for the test:', self.seed

 def test_var(self):
 N, D = 100000, 5
 # Goal variances: [0.1 , 0.45, 0.8 , 1.15, 1.5]
 expected = numpy.linspace(0.1, 1.5, D)

 # Test multiple times with random data
 for _ in range(20):
 # Generate random, D-dimensional data
 x = numpy.random.randn(N, D) * numpy.sqrt(desired)
 variance = numpy.var(x, axis=0)
 numpy.testing.assert_array_almost_equal(variance, expected, 1)

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Testing learning algorithms
}  Learning algorithms can get stuck in local maxima, the solution

for general cases might not be known (e.g., unsupervised
learning)

}  Turn your validation cases into tests

}  Stability tests:
}  Start from final solution; verify that the algorithm stays there
}  Start from solution and add a small amount of noise to the

parameters; verify that the algorithm converges back to the
solution

}  Generate data from the model with known parameters
}  E.g., linear regression: generate data as y = a*x + b + noise

for random a, b, and x, then test that the algorithm is able to
recover a and b

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Other common cases
}  Test general routines with specific ones

}  Example: test polyomial_expansion(data, degree)
with quadratic_expansion(data)

}  Test optimized routines with brute-force approaches
}  Example: test function computing analytical derivative with

numerical derivative

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Example: eigenvector decomposition
}  Consider the function values, vectors = eigen(matrix)

}  Test with simple but general cases:
}  use full matrices for which you know the exact solution

(from a table or computed by hand)

}  Test general routine with specific ones:
}  use the analytical solution for 2x2 matrices

}  Numerical fuzzing:
}  generate random eigenvalues, random eigenvector; construct the matrix;

then check that the function returns the correct values

}  Test with boundary cases:
}  test with diagonal matrix: is the algorithm stable?
}  test with a singular matrix: is the algorithm robust? Does it raise

appropriate error when it fails?

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Test-driven development (TDD)

Software carpentry: Python tools

}  An influential testing philosophy: write tests before writing
code
}  Choose what is the next feature you’d like to implement
}  Write a test for that feature
}  Write the simplest code that will make the test pass

}  Forces you to think about the design of your code before
writing it: how would you like to interact with it?

}  The result is code whose features can be tested individually,
leading to maintainable, decoupled code

}  If the results are bad, then you’ll write tests to find a bug. If it
works, will you?

Pietro Berkes, Sept 2014

DEMO

Pietro Berkes, Sept 2014 Software carpentry: Python tools

k-means

+

+

+

Testing: Money back guarantee

Pietro Berkes, Sept 2014 Software carpentry: Python tools

}  I guarantee that aggressive testing will improve your code and
your research, or you’ll get the Python school fee back!

}  Just remember, code quality is not just testing:
}  “Trying to improve the quality of software by doing more testing

is like trying to lose weight by weighing yourself more
often” (Steve McConnell, Code Complete)

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Debugging

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest
coverage.py

pdb

Pietro Berkes, Sept 2014 Software carpentry: Python tools

cProfile + runSnake
line_profiler
timeit

Debugging
}  The best way to debug is to avoid bugs

}  In TDD, you anticipate the bugs

}  Your test cases should already exclude a big portion of the
possible causes

}  Core idea in debugging: you can stop the execution of your
application at the bug, look at the state of the variables, and
execute the code step by step

}  Avoid littering your code with print statements

Software carpentry: Python tools Pietro Berkes, Sept 2014

pdb, the Python debugger
}  Command-line based debugger

}  pdb opens an interactive shell, in which one can
interact with the code
}  examine and change value of variables
}  execute code line by line
}  set up breakpoints
}  examine calls stack	

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Entering the debugger
}  Enter debugger at the start of a file:	

	
 	
 	
 	
 python –m pdb myscript.py	

}  Enter at a specific point in the code (alternative to print):

# some code here	

# the debugger starts here	

import pdb;	
 	
 pdb.set_trace()	

rest of the code

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Entering the debugger from ipython
}  From ipython:
%pdb – preventive
%debug – post-mortem

Pietro Berkes, Sept 2014 Software carpentry: Python tools

DEMO

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Optimization and profiling

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest
coverage.py

pdb

Pietro Berkes, Sept 2014 Software carpentry: Python tools

cProfile + runSnake
line_profiler
timeit

Python code optimization
}  Python is slower than C, but not prohibitively so

}  In scientific applications, this difference is even less noticeable
(numpy, scipy, ...)

}  Don’t rush into writing optimizations

Pietro Berkes, Sept 2014 Software carpentry: Python tools

How to optimize
}  Usually, a small percentage of your code takes up most of the

time

1.  Identify time-consuming parts of the code
(use a profiler)

2.  Only optimize those parts of the code

3.  Keep running the tests to make sure that code is not broken

}  Stop optimizing as soon as possible

Software carpentry: Python tools Pietro Berkes, Sept 2014

Optimization methods hierarchy
}  Warning: controversial content

}  In order of preference:
}  Vectorize code using numpy
}  Use a “magic optimization” tool, like numexpr, or numba
}  Spend some money on better hardware, optimized libraries

(e.g., Intel’s MKL)
}  Use Cython
}  Parallelize your code
}  Use GPU acceleration

}  The problem might be about the memory, not the CPU
(see Francesc’s class later this week)

Software carpentry: Python tools Pietro Berkes, Sept 2014

timeit
}  Precise timing of a function/expression

}  Test different versions of a small amount of code, often used in
interactive Python shell

}  In ipython, you can use the %timeit magic command

from timeit import Timer

more detailed control of timing
t = Timer("module.function(arg1, arg2)", "import module")
make three measurements of timing, repeat 2 million times
t.repeat(3, 2000000)

Pietro Berkes, Sept 2014 Software carpentry: Python tools

cProfile
}  standard Python module to profile an entire application

(profile is an old, slow profiling module)

}  Running the profiler from command line:

options
 -o output_file
 -s sort_mode (calls, cumulative,name, …)

}  Most convenient way of visualizing results: RunSnakeRun

python -m cProfile myscript.py

Pietro Berkes, Sept 2014 Software carpentry: Python tools

DEMO

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Pietro Berkes, Sept 2014 Software carpentry: Python tools

More agile tools and concepts

Code coverage
}  It’s easy to leave part of the code untested

Classics:
}  Feature activated by keyword argument
}  Exception raised for invalid input

}  Coverage tools mark the lines visited during execution

}  Use together with test framework to make sure all your code
is tested

Software carpentry: Python tools Pietro Berkes, Sept 2014

coverage.py
}  Python script to perform code coverage

}  Produces text and HTML reports

}  Allows branch coverage analysis

}  Not included in standard library, but quite standard

Pietro Berkes, Sept 2014 Software carpentry: Python tools

DEMO

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Continuous Integration
}  The process of continuously merging new features in a library

of application.

}  Often used to refer to the set of tools that make it feasible.

}  Very common combo these days:

 github + Travis CI + coveralls.io

Gives you automatic testing and coverage on all Pull Requests
in your project.

Pietro Berkes, Sept 2014 Software carpentry: Python tools

DEMO

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Final thoughts
}  Starting point: scientific code has slightly different needs than

“regular” code, including the need to ensure correctness

}  Agile programming methods, and testing in particular, go a long
way toward this goal

}  Agile programming in Python is as easy as it gets, there are no
excuses not to do it!

Software carpentry: Python tools Pietro Berkes, Sept 2014

The End
}  Exercises after the break...

Pietro Berkes, Sept 2014 Software carpentry: Python tools

Pietro Berkes, Sept 2014 Software carpentry: Python tools

