OOP and Design patterns Exercises

For each problem the approximate time and difficulty level is provided. You
can pick those exercises that seem most interesting to you and best match your
experience level.

Depending on your experience level you might want to focus on how to use
classes and objects from a technical point of view, or concentrate on the more
abstract concepts from the lecture (e.g., the SOLID principles).

Please ask the tutors if anything is unclear, or for questions regarding the
lecture. As mentioned in the lecture, it is hard to learn software design from
toy examples or short exercises, so don’t take these exercises to serious.

1. (20 min, easy to intermediate) The graph module (provided on the Wiki
page) contains a set of classes for representing graphs. On a piece of paper
reverse engineer its design:

(a) Write down all class names, their methods and public properties; try
to understand what all of them do.
(b) Figure out how different classes are depending on each other.

(c¢) Use the classes to represent the following graph:

(d) What are the weaknesses of this design? The code contains comments
that raise some questions about the design, think about these.

(e) How would you improve this design? How might an alternative design
look like? We will come back to this in exercise 4, so don’t spend too
much time on it now.

2. (no fixed time, some experience required) Talk with your partner about
your experience in writing and designing software.

What went well and what didn’t? Where did you follow the principles
laid out in the lecture, and where not? Do you agree with what was said
in the lecture? Can you apply it in your work?

3. (40 min, easy, very close to the lecture) Modify the code in starbuzz.py
(provided on the wiki page) to use the Decorator Pattern.

(a) Define a class BeverageDecorator which is instantiated with a bev-
erage object and contains two methods: get_cost which adds the
cost of the decorator to the total drink cost and get_description
which updates the description of the drink.

(b) Subclassing BeverageDecorator define new ingredients: Milk and
Cream. Use the ingridients to produce new drinks combinations.

(¢) (Optional) Write unittests for your code and add propper docstrings.

4. (60 min, intermediate, depends on execise 1) In this exercise, we want to
solve a travel planning problem based on the graph module. We want to
represent a set of cities as nodes in a graph, with edges between nodes
representing different kinds of transportation. Cities must have a name
assigned to them. Transportation edges have three properties (in addi-
tion to connecting two cities): the travel time, the cost and the kind of
transportation (e.g., a string “train”).

(a) Think about how you can extend the original design to accomodate
the new requirements. Can you come up with a better design? For
example, the popular NetworkX graph library for Python uses quite
a different design approach (you can look at its online documentation
for inspiration).

(b) Change the design as you like (refactor) and implement the new
requirements. If you prefer to stick with the old design you are free to
do that as well (e.g., deriving a CityNode and TransporationEdge
class). Optionally update the unittests as well (unittests will be
discussed later in this school, so you can skip this step for now).

(¢) Implement the following city graph as an example:

train
— Hamburg (50 €, 100 min)
(100 €, 240 min)
plane
(120 €, 50 min)
plane
()

150 €, 30 min .
Berlin
Cologne
plane plane
(150 €, 40 min) (200 €, 40 min)

Munich

(d) Now find the quickest path from Berlin to Cologne, using the algo-
rithm that is already provided in the graph module.

(e) Provide the quickest path for alternative weight functions (hint: maybe
get rid of inheritance being used to define the weight function). Use
this to find the the cheapest and fastest paths between Berlin and
Cologne.

(f) Turn your graph into an iterable (providing an __iter__ method).

5. (90 min, intermediate to advanced) Write a library to represent ratio-
nal numbers (i.e., basically reimplement the fractions module from the
standard library).

It should support the standard features expected from such a module,
like addition and multiplication (including the simplification of fractions),
getting the numerator/denominator, a nice textual representation, and
whatever you can think off...

Unittests would be really important for such a library, so use TDD if you
have previous experience with that (unit tests will be covered later in this
school).

