
Object Oriented Design

Niko Wilbert

with contributions from Bartosz Telenczuk

Advanced Scientific Programming in Python

Summer School 2014, Split

Disclaimer

Good software design is a never ending learning process.
(so this is just a teaser)

Deeply rooted in practical experience.
(mostly pain and failure)

Not an exact science,
it’s about tradeoffs and finding the right balance.

Note:
The examples are implemented in Python 2.7.
They do not always conform to PEP8 (due to limited space).
They are only meant to highlight certain points.

Overview

1. General Design Principles

2. Object Oriented Programming in Python

3. Object Oriented Design Principles and Patterns

4. Design Pattern Examples

General Design Principles

The Problem of Scale

“Beyond a certain critical mass, a building becomes a BIG Building.
Such a mass can no longer be controlled by a singular architectural
gesture, or even by any combination of architectural gestures. The
impossibility triggers the autonomy of its parts, which is different from
fragmentation: the parts remain committed to the whole.”

Rem Koolhaas in “Bigness and the Problem of Large”

Effective Software Design

Two simple general principles (we’ll come back to this):

KIS (Keep It Simple)
No Overengineering, no Spaghetti code.

DRY (Don’t Repeat Yourself)
Code duplication equals bug reuse.

Agile Development:

Iterative Development, Planning vs. Learning

■ One cannot anticipate every detail of a complex problem.

■ Start simple (with something that works), then improve it.

■ Identify emerging patterns and continuously adapt the structure of
your code. (Refactoring, for which you want Unittests)

Object Oriented Programming
(in Python)

Object Orientated Programming

Objects
Combine state (data) and behavior (algorithms).

Encapsulation
Only what is necessary is exposed (public interface) to the outside.
Implementation details are hidden to provide abstraction.
Abstraction should not leak implementation details.
Abstraction allows us to break up a large problem into understandable
parts.

Classes
Define what is common for a whole class of objects, e.g.:
“Snowy is a dog”
= “The Snowy object is an instance of the dog class.”
Define once how a dog works and then reuse it for all dogs.
The class of an object is its type (classes are type objects).

Object Orientated Programming (II)

Inheritance
“a dog (subclass) is a mammal (parent / superclass)”
Subclass is derived from / inherits / extends a parent class.

Override parts with specialized behavior and extend it with additional
functionality.

Liskov substitution principle : What works for the parent class should
also work for any subclass.

Polymorphism
Different subclasses can be treated like the parent class,
but execute their specialized behavior.

Example: When we let a mammal make a sound that is an instance of
the dog class, then we get a barking sound.

Object Orientation in Python

■ Python is a dynamically typed language, which means that the type
(class) of a variable is only known when the code runs.

■ Duck Typing : No need to know the class of an object if it provides
the required methods.

“When I see a bird that walks like a duck and swims like a duck and
quacks like a duck, I call that bird a duck.”

■ Type checking can be performed via the isinstance function,
but generally prefer duck typing and polymorphism.

■ Python relies on convention and documentation instead of
enforcement.

No enforced private attributes, use a single underscore to signal that
an attribute is not intended for public use (encapsulation).

Python Object Orientation Basics

■ All classes are derived from object (new-style classes).

class Dog(object):
pass

■ Python objects have data and function attributes (methods).

class Dog(object):
def bark (self):

print "Wuff!"

snowy = Dog()
snowy.bark() # first argument (self) is bound to this Dog instance
snowy.a = 1 # added attribute a to snowy

■ Always define your data attributes first in __init__ .

class Dataset (object):
def __init__ (self):

self.data = None
def store_data (self, raw_data):

... # process the data
self.data = processed_data

Python Object Orientation Basics (II)

■ Class attributes are shared across all instances.

class Platypus (Mammal):
latin_name = "Ornithorhynchus anatinus"

■ Use super to call a method from a superclass.

class Dataset (object):
def __init__ (self, data):

self.data = data

class MRIDataset (Dataset):
__init__ does not have to follow the Liskov principle
def __init__ (self, data, parameters):

here has the same effect as calling
Dataset.__init__(self)
super(MRIDataset, self).__init__(data)
self.parameters = parameters

mri_data = MRIDataset([1,2,3], { 'amplitude' : 11 })

Note: In Python 3 super(B, self) can be written super() .

Python Object Orientation Basics (III)

■ Special / magic methods start and end with two underscores
(“dunder”) and customize standard Python behavior (e.g., operator
overloading).

class My2Vector (object):
def __init__ (self, x, y):

self.x = x
self.y = y

def __add__ (self, other):
return My2Vector(self.x+other.x, self.y+other.y)

v1 = My2Vector(1, 2)
v2 = My2Vector(3, 2)
v3 = v1 + v2

Python Object Orientation Basics (IV)

■ Properties allow you to add behavior to data attributes:

class My2Vector (object):
def __init__ (self, x, y):

self._x = x
self._y = y

@property # this defines the getter
def x (self):

print "returning x, which is {} " .format(self._x)
return self._x

@x.setter
def x (self, x):

print "setting x to {} " .format(x)
self._x = x

x = property(get_x, set_x)

v1 = My2Vector(1, 2)
x = v1.x # uses the getter, which prints the value
v1.x = 4 # uses the setter, printing the value

Helps with refactoring (can replace direct attribute access with a
property).

Advanced Kung-Fu

There many advanced techniques that we didn’t cover:

■ Multiple inheritance (deriving from multiple classes) can create a real
mess. Need to understand the MRO (Method Resolution Order) to
understand super .

■ Modify classes and objects at runtime, e.g., overwrite or add
methods (monkey patching).

■ Class decorators can be used to augment a class.

■ Abstract Base Classes allow us to register classes as subclasses
without actual inheritance (overriding isinstance).

■ Metaclasses (derived from type), their instances are classes.
Great way to dig yourself a hole when you think you are clever.

Try to avoid these, in most cases you would regret it. (KIS)

Stop Writing Classes!

Good reasons for not writing classes:

■ A class is a tightly coupled piece of code, can be an obstacle for
change. Complicated inheritance hierarchies hurt.

■ Tuples can be used as simple data structures, together with
stand-alone functions.
Introduce classes later, when the code has settled.

■ collections.namedtuple can be used as an additional
intermediate step (can use __slots__ to keep the lower memory
footprint when switching to classes).

■ Functional programming can be very elegant for some problems,
coexists with object oriented programming.

(see “Stop Writing Classes” by Jack Diederich)

Functional Programming

Pure functions have no side effects.
(mapping of arguments to return value, nothing else)

Great for parallelism and distributed systems.
Also great for unittests and TDD (Test Driven Development).

It’s interesting to take a look at functional programming languages
(e.g., Haskell) to get a fresh perspective.

Functional Programming in Python

Python supports functional programming to some extend, for example:

■ Functions are just objects, pass them around!

def get_hello (name):
return "hello " + name

a = get_hello
print a("world") # prints "hello world"

def apply_twice (f, x):
return f(f(x))

print apply_twice(a, "world") # prints "hello hello world"

Functional Programming in Python (II)

■ Functions can be nested and remember their context at the time of
creation (closures, nested scopes).

def get_add_n (n):
def _add_n (x):

return x + n
return _add_n

add_2 = get_add_n(2)
add_3 = get_add_n(3)

add_2(1) # returns 3
add_3(1) # returns 4

Object Oriented
Design Principles and Patterns

How to do Object Oriented Design right?

How to come up with a good structure for classes and modules?

■ KIS & iterate. When you see the same pattern for the third time
then it might be a good time to create an abstraction (refactor).

■ Sometimes it helps to sketch with pen and paper.

■ Classes and their inheritance often have no correspondence to the
real-world, be pragmatic instead of perfectionist.

■ Design principles tell you in an abstract way what a good design
should look like (most come down to loose coupling).

■ Testability (with unittests) is a good design criterium.

■ Design Patterns are concrete solutions for reoccurring problems.

Some Design Principles

■ One class, one single clearly defined responsibility (cohesion).

■ Principle of least knowledge (Law of Demeter):
Each unit should have only limited knowledge about other units.
Only talk to your immediate friends.

■ Favor composition over inheritance.
Inheritance is not primarily intended for code reuse, its main selling
point is polymorphism.

Ask yourself: “Do I want to use these subclasses interchangeably?”

■ Identify the aspects of your application that vary and separate them
from what stays the same.

Classes should be “open for extension, closed for modification”
(Open-Closed Principle).
You should not have to modify the base class.

Some Design Principles (II)

■ Minimize the surface area of the interface.
(Interface Segregation principle)

■ Program to an interface, not an implementation.
Do not depend upon concrete classes.
Decouple class instantiation from use.
(Dependency Inversion, Dependency Injection)

SOLID = Single Responsibility + Open-Closed + Liskov Substitution +
Interface Segregation + Dependency Inversion

Design Patterns

Started with “Design Patterns. Elements of Reusable Object-Oriented
Software.” (1995), written by the “Gang of Four” (GoF).

Easier to read: “Head First Design Patterns” (uses Java)

Examples

We’ll now discus three popular patterns:

■ Iterator Pattern

■ Decorator Pattern

■ Strategy Pattern

These are just three of many patterns, so go read the book ;-)

Standard pattern names simplify communication between programmers!

Iterator Pattern

Problem

How would you iterate over elements from a collection?

A first (inept) attempt (imitating C code):

>>> my_collection = ['a' , 'b' , 'c']
>>> for i in range(len(my_collection)):
... print my_collection[i],
a b c

But what if my_collection does not support indexing?

>>> my_collection = { '#x1' : 'a' , '#x2' : 'b' , '#y1' : 'c' }
>>> for i in range(len(my_collection)):
... print my_collection[i],
What will happen here?

Should we have to care about this when all we want is iterate?

Idea: Provide an abstraction for iteration handling that separates us
from the collection implementation.

Description

What we want:

■ Standard interface for collections that we can iterate over
(we call these iterables),

■ Iteration state (e.g., the position counter) should be decoupled form
the container and should be encapsulated. Use an iterator object,
which keeps track of an iteration and knows what the next element
is.

What to implement:

The iterator has a next() method that returns the next item from the
collection. When all items have been returned it raises a
StopIteration exception.

The iterable provides an __iter__() method, which returns an
iterator object.

Example

class MyIterable (object):
def __init__ (self, items):

"""items -- List of items."""
self.items = items

def __iter__ (self):
return _MyIterator(self)

class _MyIterator (object):
def __init__ (self, my_iterable):

self._my_iterable = my_iterable
self._position = 0

def next (self):
if self._position >= len(self._my_iterable.items):

raise StopIteration()
value = self._my_iterable.items[self._position]
self._position += 1
return value

in Python, iterators also support iter by returning self
def __iter__ (self):

return self

Note: In Python 3 next() becomes __next__() .

Example (II)

Lets perform the iteration manually using this interface:

iterable = MyIterable([1,2,3])
iterator = iter(iterable) # or use iterable.__iter__()
try :

while True:
item = iterator.next()
print item

except StopIteration:
pass

print "Iteration done."

...or just use the Python for-loop:

for item in iterable:
print item

print "Iteration done."

In fact, Python lists are already iterables:

for item in [1, 2, 3]:
print item

Summary

■ Whenever you use a for-loop in Python you use the power of the
Iterator Pattern!

■ Implement the iterable interface in your containers.
Accept an iterable (or iterator) in your consumers.

■ The iterator has a single responsibility, while the iterable does not
have to keep track of the iteration (which isn’t its business).

■ Note that __iter__ is semantically different for iterables and
iterators (duck typing fail!).

■ Normally one uses generator functions with yield instead of
writing iterator classes.

Use case: Processing huge data sets in manageable chunks that can
come from different sources (e.g., from local disk or from the network).

Decorator Pattern

Starbuzz Coffee

class Beverage (object):
imagine some attributes like temperature, amount left,...

def get_description (self):
return "beverage"

def get_cost (self):
return 0.00

class Coffee (Beverage):

def get_description (self):
return "coffee"

def get_cost (self):
return 3.00

class Tee(Beverage):

def get_description (self):
return "tee"

def get_cost (self):
return 2.50

example taken from “Head First Design Patterns”

A

Adding Ingredients: First Try

class Beverage (object):
def __init__ (self, with_milk, with_sugar):

self.with_milk = with_milk
self.with_sugar = with_sugar

def get_description (self):
description = str(self._get_default_description())
if self.with_milk:

description += ", with milk"
if self.with_sugar:

description += ", with_sugar"
return description

def _get_default_description (self):
return "beverage"

same for get_cost...

class Coffee (Beverage):
def _get_default_description (self):

return "normal coffee"

and so on...

But what if we want more ingredients? Open-closed principle?

Adding Ingredients: Second Try

class CoffeeWithMilk (Coffee):

def get_description (self):
return (super(CoffeeWithMilk, self).get_description() +

", with milk")

def get_cost (self):
return super(CoffeeWithMilk, self).get_cost() + 0.30

class CoffeeWithMilkAndSugar (CoffeeWithMilk):

And so on, what a mess!

What we want:

■ Adding a new ingredient like soy milk should not modify the original
beverage classes.

■ Adding new ingredients should be simple and work automatically
across all beverages.

Solution: Decorator Pattern

class BeverageDecorator (Beverage):

def __init__ (self, beverage):
super(BeverageDecorator, self).__init__()
self.beverage = beverage

class Milk (BeverageDecorator):

def get_description (self):
return self.beverage.get_description() + ", with milk"

def get_cost (self):
return self.beverage.get_cost() + 0.30

coffee_with_milk = Milk(Coffee())

Composition solves the problem.

Note: Do not confuse this with Python function decorators.

Strategy Pattern

Duck Simulator

class Duck (object):

def __init__ (self):
for simplicity this example class is stateless

def quack (self):
print "Quack!"

def display (self):
print "Boring looking duck."

def take_off (self):
print "I'm running fast, flapping with my wings."

def fly_to (self, destination):
print "Now flying to %s." % destination

def land (self):
print "Slowing down, extending legs, touch down."

(example taken from “Head First Design Patterns”)

Duck Simulator (II)

class RedheadDuck (Duck):

def display (self):
print "Duck with a read head."

class RubberDuck (Duck):

def quack (self):
print "Squeak!"

def display (self):
print "Small yellow rubber duck."

Oh, snap! The RubberDuck has same flying behavior like a normal
duck, must override all the flying related methods.

What if we want to introduce a DecoyDuck as well? (DRY)

What if a normal duck suffers a broken wing?

Idea: Create a FlyingBehavior class which can be plugged into the
Duck class.

Solution

class FlyingBehavior (object):

def take_off (self):
print "I'm running fast, flapping with my wings."

def fly_to (self, destination):
print "Now flying to %s." % destination

def land (self):
print "Slowing down, extending legs, touch down."

class Duck (object):
def __init__ (self):

self.flying_behavior = FlyingBehavior()

def take_off (self):
self.flying_behavior.take_off()

def fly_to (self, destination):
self.flying_behavior.fly_to(destination)

def land (self):
self.flying_behavior.land()

display, quack as before...

Solution (II)

class NonFlyingBehavior (FlyingBehavior):

def take_off (self):
print "It's not working :-("

def fly_to (self, destination):
raise Exception("I'm not flying anywhere.")

def land (self):
print "That won't be necessary."

class RubberDuck (Duck):
def __init__ (self):

self.flying_behavior = NonFlyingBehavior()

def quack (self):
print "Squeak!"

def display (self):
print "Small yellow rubber duck."

class DecoyDuck (Duck):
def __init__ (self):

self.flying_behavior = NonFlyingBehavior()

different display, quack implementation...

Analysis

The strategy in this case is the flying behavior.

■ If a poor duck breaks its wing we do:
duck.flying_behavior = NonFlyingBehavior()
Flexibility to change the behaviour at runtime!

■ Could have avoided code duplication with inheritance (by defining a
NonFlyingDuck). Could make sense, but is less flexible.

■ Relying less on inheritance and more on composition.

Strategy Pattern means:

■ Encapsulate the different strategies in different classes.
■ Store a strategy object in your main object as a data attribute.
■ Delegate all the strategy calls to the strategy object.

For example, use this to compose data analysis algorithms.

Strategy Pattern with Functions

What if our behavior only needs a single method?

Stop writing classes!™ Use a function!

Standard examples:

■ Sorting with a customized sort key:

>>> sorted(["12" , "1" , "2"], key= lambda x: int(x))
['1' , '2' , '12']

■ Filtering with a predicate function:

>>> predicate = lambda x: int(x) > 2
>>> data = ["1" , "2" , "12"]
>>> [x for x in data if predicate(x)]
['12']

Closing Notes on Patterns

More on Patterns

Other famous patterns:

■ Observer

■ Factory

■ Model-View-Controller (MVC)
Compound of multiple patterns.

Warning: Some old patterns are nowadays often considered anti-patterns:

■ Singleton (overused, replaced with dependency injection)

■ Template Method (composition is generally better)

Wabi-sabi (Closing Notes / Cheesy Analogy)

“Wabi-sabi represents a comprehensive Japanese world view or aesthetic
centered on the acceptance of transience and imperfection. The
aesthetic is sometimes described as one of beauty that is imperfect,
impermanent, and incomplete.” (from Wikipedia)

Acknowledgements

Thanks to my employer for supporting this school.

www.tngtech.com

We are hiring :-)

The examples were partly adapted from
“Head First Design Patterns” (O’Reilly) and
“Design Patterns in Python” http://www.youtube.com/watch?v=0vJJlVBVTFg

Image Sources

■ CCTV building: Jakob Montrasio (CC BY)

■ Rem Koolhaas image: Rodrigo Fernández (CC BY SA)

■ Wasi-sabi bowl: Chris 73 / Wikimedia Commons (CC BY SA)

Please inform if any other illustration images infringe copyright to have
them removed.

	Disclaimer
	Overview
	General Design Principles 0.3cm [width=0.6]koolhaascctv
	The Problem of Scale
	Effective Software Design

	Object Oriented Programming (in Python) 1cm [width=0.6]animals
	Object Orientated Programming
	Object Orientated Programming (II)
	Object Orientation in Python
	Python Object Orientation Basics
	Python Object Orientation Basics (II)
	Python Object Orientation Basics (III)
	Python Object Orientation Basics (IV)
	Advanced Kung-Fu
	Stop Writing Classes!
	Functional Programming
	Functional Programming in Python
	Functional Programming in Python (II)

	Object Oriented Design Principles and Patterns 0.4cm [width=0.70,]liskov
	How to do Object Oriented Design right?
	Some Design Principles
	Some Design Principles (II)
	Design Patterns
	Examples

	Iterator Pattern
	Problem
	Description
	Example
	Example (II)
	Summary

	Decorator Pattern
	Starbuzz Coffee
	Adding Ingredients: First Try
	Adding Ingredients: Second Try
	Solution: Decorator Pattern

	Strategy Pattern
	Duck Simulator
	Duck Simulator (II)
	Solution
	Solution (II)
	Analysis
	Strategy Pattern with Functions

	Closing Notes on Patterns
	More on Patterns
	Wabi-sabi (Closing Notes / Cheesy Analogy)
	Acknowledgements
	Image Sources

