
OOP and Design patterns Exercises

1. (20 min) The graph module (provided on the Wiki page) contains a set
of classes for representing graphs. On a piece of paper reverse engineer its
design:

(a) Write down all class names, their methods and public properties; try
to understand what all of them do.

(b) Figure out how different classes are depending on each other.

(c) Use the classes to represent the following graph:

(d) What are the weaknesses of this design? The code contains comments
that raise some questions about the design, think about these.

(e) How would you improve this design? How might an alternative design
look like? We will come back to this later, so don’t spend too much
time on it now.

2. (40 min) Modify the code in starbuzz.py to use the Decorator Pattern.

(a) Define a class BeverageDecorator which is instantiated with a bev-
erage object and contains two methods: get cost which adds the
cost of the decorator to the total drink cost and get description
which updates the description of the drink.

(b) Subclassing BeverageDecorator define new ingredients: Milk and
Cream. Use the ingridients to produce new drinks combinations.

(c) (Optional) Write unittests for your code and add propper docstrings.

1



3. (60 min) In this exercise, we want to solve a travel planning problem based
on the graph module. We want to represent a set of cities as nodes in a
graph, with edges between nodes representing different kinds of trans-
portation. Cities must have a name assigned to them. Transportation
edges have three properties (in addition to connecting two cities): the
travel time, the cost and the kind of transportation (e.g., a string “train”).

(a) Think about how you can extend the original design to accomodate
the new requirements. Can you come up with a better design? For
example, the popular NetworkX graph library for Python uses quite
a different design approach (you can look at its online documentation
for inspiration).

(b) Change the design as you like (refactor) and implement the new
requirements. If you prefer to stick with the old design you are free to
do that as well (e.g., deriving a CityNode and TransporationEdge
class). Optionally update the unittests as well (unittests will be
discussed later in this school, so you can skip this step for now).

(c) Implement the following city graph as an example:

(d) Now find the quickest path from Berlin to Cologne, using the algo-
rithm that is already provided in the graph module.

(e) Provide the quickest path for alternative weight functions (hint: maybe
get rid of inheritance being used to define the weight function). Use
this to find the the cheapest and fastest paths between Berlin and
Cologne.

(f) Turn your graph into an iterable (providing an iter method).

2


