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Computing a Polynomial

We want to compute the next polynomial:

y = 0.25x3+0.75x²−1.5x −2

in the range [-1, 1], with a granularity of 10 million points the x axis
...and want to do that as FAST as possible...
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Use NumPy

NumPy is a powerful package that let you perform calculations with
Python, but at C speed:

Computing y = 0.25x3+0.75x²−1.5x−2 with NumPy
import numpy as np
N = 10*1000*1000
x = np.linspace(-1, 1, N)
y = .25*x**3 + .75*x**2 - 1.5*x - 2

That takes around 0.86 sec on our machine (Intel Core i5-3380M
CPU @ 2.90GHz). How to make it faster?
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’Quick & Dirty’ Approach: Parallelize

The problem of computing a polynomial is “embarrassingly”
parallelizable: just divide the domain to compute in N chunks
and evaluate the expression for each chunk.
This can be easily implemented in Python by, for example,
using the multiprocessing module (so as to bypass the
GIL). See poly-mp.py script.
Using 2 cores, the 0.86 sec is slowed down to 0.88 sec! WTF?
Can we continue to believe in parallelism at all?

Francesc Alted The Starving CPU Problem



Motivation
The Data Access Issue

High Performance Libraries
Summary

Another (Much Easier) Approach: Factorize

The NumPy expression:
(I) y = .25*x**3 + .75*x**2 - 1.5*x - 2
can be rewritten as:
(II) y = ((.25*x + .75)*x - 1.5)*x - 2

With this, the time goes from 0.86 sec to 0.107 sec, which is
much faster (8x) than using two processors with the
multiprocessing approach (0.88 sec).

Advice
Give optimization a chance before parallelizing!
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Numexpr Can Compute Expressions Way Faster

Numexpr is a JIT compiler, based on NumPy, that optimizes the
evaluation of complex expressions. Its use is easy:

Computing y = 0.25x3+0.75x²−1.5x−2 with numexpr
import numexpr as ne
N = 10*1000*1000
x = np.linspace(-1, 1, N)
y = ne.evaluate(’.25*x**3 + .75*x**2 - 1.5*x - 2’)

That takes around 0.059 sec to complete, which is 15x faster than
the original NumPy expression (0.86 sec).
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Fine-tune Expressions with Numexpr

Numexpr is also sensible to computer-friendly expressions like:
(II) y = ((.25*x + .75)*x - 1.5)*x - 2

Numexpr takes 0.046 sec for the above (0.059 sec were needed
for the original expression, that’s a 28% faster)
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Using Multiple Threads with Numexpr

Numexpr accepts using several processors:

Asking numexpr to use a certain number of threads
import numexpr as ne
N = 10*1000*1000
x = np.linspace(-1, 1, N)
ne.set_num_threads(2)
y = ne.evaluate(’((.25*x + .75)*x - 1.5)*x - 2’)

That takes around 0.029 sec to complete, which is a 60% faster
than using a single processor (0.46 sec).
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Summary and Open Questions

1 core 2 core Parallel Speed-up
NumPy (I) 0.867 0.887 0.98x
NumPy(II) 0.107 0.484 0.22x
Numexpr(I) 0.059 0.034 1.74x
Numexpr(II) 0.046 0.029 1.59x

C(II) 0.013 0.013 1.00x

If all the approaches perform the same computations, all in C
space, why the wild differences in performance?
Why the different approaches do not scale similarly in parallel
mode?
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A First Answer: Power Expansion and Performance

Numexpr expands the expression:

0.25*x**3 + 0.75*x**2 + 1.5*x - 2

to:

0.25*x*x*x + 0.75*x*x + 1.5*x*x - 2

so, no need to use the expensive pow()
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One (Important) Remaining Question

Why numexpr can execute this expression:

((0.25x + 0.75)x + 1.5)x - 2

more than 2x faster than NumPy, even using a single core?

Short answer
By making a more efficient use of the memory resource

.
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Quote Back in 1993

“We continue to benefit from tremendous increases in
the raw speed of microprocessors without proportional
increases in the speed of memory. This means that ’good’
performance is becoming more closely tied to good
memory access patterns, and careful re-use of operands.”

“No one could afford a memory system fast enough to
satisfy every (memory) reference immediately, so vendors
depends on caches, interleaving, and other devices to
deliver reasonable memory performance.”

– Kevin Dowd, after his book “High Performance
Computing”, O’Reilly & Associates, Inc, 1993
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Quote Back in 1996

“Across the industry, today’s chips are largely able to
execute code faster than we can feed them with
instructions and data. There are no longer performance
bottlenecks in the floating-point multiplier or in having
only a single integer unit. The real design action is in
memory subsystems— caches, buses, bandwidth, and
latency.”

“Over the coming decade, memory subsystem design
will be the only important design issue for
microprocessors.”

– Richard Sites, after his article “It’s The Memory,
Stupid!”, Microprocessor Report, 10(10),1996
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CPU vs Memory Cycle Trend
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Book in 2009
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The CPU Starvation Problem

Known facts (in 2013):
Memory latency is much slower (between 250x and 500x) than
processors and has been an essential bottleneck for the past
fifteen years.
Memory throughput is improving at a better rate than memory
latency, but it is also much slower than processors (between
30x and 100x).

The result is that CPUs in our current computers are suffering from
a serious starvation data problem: they could consume (much!)
more data than the system can possibly deliver.
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What Is the Industry Doing to Alleviate CPU Starvation?

They are improving memory throughput: cheaper to
implement (more data is transmitted on each clock cycle).
They are adding big caches in the CPU dies.
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Why Is a Cache Useful?

Caches are closer to the processor (normally in the same die),
so both the latency and throughput are improved.
However: the faster they run the smaller they must be.
They are effective mainly in a couple of scenarios:

Time locality: when the dataset is reused.
Spatial locality: when the dataset is accessed sequentially.
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Time Locality

Parts of the dataset are reused

Memory (C array)

Cache
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Spatial Locality

Dataset is accessed sequentially

Memory (C array)

Bad

Bad

Good!

Cache

Line 1

Line 2
Prefetch

Fetch
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The Hierarchical Memory Model

Introduced by industry to cope with CPU data starvation
problems.
It consists in having several layers of memory with different
capabilities:

Lower levels (i.e. closer to the CPU) have higher speed, but
reduced capacity. Best suited for performing computations.
Higher levels have reduced speed, but higher capacity. Best
suited for storage purposes.
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The Primordial Hierarchical Memory Model

Two level hierarchy

CPU

Memory

Disk
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The 2000’s Hierarchical Memory Model

Four level hierarchy

Main Memory

Disk
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CPU

Level 2 Cache

Level 1 Cache
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The Current Hierarchical Memory Model

Six level (or more) hierarchy

Main Memory

Solid State Disk

C
a
p
a
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CPU

Level 2 Cache

Level 1 Cache

Mechanical Disk

Level 3 Cache
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Once Upon A Time...

In the 1970s and 1980s many computational scientists had to
learn assembly language in order to squeeze all the
performance out of their processors.
In the good old days, the processor was the key bottleneck.
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Nowadays...

Every computer scientist must acquire a good knowledge of
the hierarchical memory model (and its implications) if they
want their applications to run at a decent speed (i.e. they do
not want their CPUs to starve too much).
Memory organization has become now the key factor for
optimizing.

The BIG difference is. . .
. . . learning assembly language is relatively easy, but understanding
how the hierarchical memory model works requires a considerable
amount of experience (it’s almost more an art than a science!)
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The Blocking Technique

When you have to access memory, get a contiguous block that fits
in the CPU cache, operate upon it or reuse it as much as possible,
then write the block back to memory:

Cache

Dataset A

CPU

Operate

Dataset B

Dataset C

C = A <oper> B

Although this technique is easy to apply in some cases (e.g.
element-wise array computations), it can be potentially difficult to
efficiently implement in others.
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Understand NumPy Memory Layout

Being “a” a squared array (4000x4000) of doubles, we have:

Summing up column-wise
a[:,1].sum() # takes 9.3 ms

Summing up row-wise: more than 100x faster (!)
a[1,:].sum() # takes 72 µs

Remember:
NumPy arrays are ordered row-wise (C convention) by default
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Vectorize Your Code

Naive matrix-matrix multiplication: 1264 s (1000x1000 doubles)
def dot_naive(a,b): # 1.5 MFlops

c = np.zeros((nrows, ncols), dtype=’f8’)
for row in xrange(nrows):

for col in xrange(ncols):
for i in xrange(nrows):

c[row,col] += a[row,i] * b[i,col]

return c

Vectorized matrix-matrix multiplication: 20 s (64x faster)
def dot(a,b): # 100 MFlops

c = np.empty((nrows, ncols), dtype=’f8’)
for row in xrange(nrows):

for col in xrange(ncols):
c[row, col] = np.sum(a[row] * b[:,col])

return c
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Interlude: Resolving More Open Questions
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NumPy And Temporaries

a b c a*b+c

a*b

CPU
cache

Computing "a*b+c" with NumPy.  Temporaries goes to memory.

memory
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Numexpr Avoids (Big) Temporaries

a b c a*b+c

CPU
cache

Computing "a*b+c" with Numexpr.  Temporaries in memory are avoided.

memory

a*b
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Some More Mysteries Solved Now!

1 core 2 core Parallel Speed-up
NumPy (I) 0.867 0.887 0.98x
NumPy(II) 0.107 0.484 0.22x
Numexpr(I) 0.059 0.034 1.74x
Numexpr(II) 0.046 0.029 1.59x

C(II) 0.013 0.013 1.0x
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Some High Performance Libraries

BLAS Routines that provide standard building blocks for
performing basic vector and matrix operations.

ATLAS Memory efficient algorithms as well as SIMD
algorithms so as to provide an efficient BLAS
implementation.

MKL (Intel’s Math Kernel Library): Like ATLAS, but with
support for multi-core and fine-tuned for Intel
architecture. Its VML subset computes basic math
functions (sin, cos, exp, log...) very efficiently.

Numexpr: Performs relatively simple operations with NumPy
arrays without the overhead of temporaries. Can
make use of multi-cores.

Numba: Can compile potentially complex Python code
involving NumPy arrays via LLVM infraestructure.
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BLAS/ATLAS/Intel’s MKL
Optimizing Memory Access

Using integrated BLAS: 5.6 s (3.5x faster than vectorized)
numpy.dot(a,b) # 350 MFlops

Using ATLAS: 0.19s (35x faster than integrated BLAS)
numpy.dot(a,b) # 10 GFlops

Using Intel’s MKL: 0.11 s (70% faster than LAPACK)

numpy.dot(a,b) # 17 GFlops (2x12=24 GFlops peak)
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Numexpr: Dealing with Complex Expressions

Numexpr is a specialized virtual machine for evaluating expressions.
It accelerates computations by using blocking and by avoiding
temporaries.
For example, if “a” and “b” are vectors with 1 million entries each:

Using plain NumPy
a**2 + b**2 + 2*a*b # takes 21.5 ms

Using Numexpr (one thread): more than 2x faster!
numexpr.evaluate(’a**2 + b**2 + 2*a*b’) # 10.2 ms
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Numexpr: Multithreading Support

Numexpr can use multiple threads easily:

numexpr.set_num_threads(8) # use 8 threads

numexpr.evaluate(’a**2 + b**2 + 2*a*b’)

# 3.18 ms, 7x faster than NumPy

numexpr.set_num_threads(16) # use 16 threads

numexpr.evaluate(’a**2 + b**2 + 2*a*b’)

# 1.98 ms, 11x faster than NumPy

Important

Numexpr also has support for Intel’s VML (Vector Math Library),
so you can accelerate the evaluation of transcendental (sin, cos,
atanh, sqrt. . . ) functions too.
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Numba: Overcoming numexpr Limitations
NumPy aware dynamic Python compiler using LLVM

Numba is a JIT that can translate a subset of the Python
language into machine code
It uses LLVM infrastructure behind the scenes
For a single thread, it can achieve similar or better
performance than numexpr, but with more flexibility
The costs of compilation can be somewhat high though
Free software (MIT-like license).
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How Numba Works
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Numba Example: Computing the Polynomial

from numba import autojit
import numpy as np
N = 10*1000*1000
x = np.linspace(-1, 1, N)
y = np.empty(N, dtype=np.float64)
@autojit
def poly(x, y):

for i in range(N):
y[i] = ((0.25*x[i] + 0.75)*x[i] + 1.5)*x[i] - 2

poly(x, y) # run through Numba!

print y
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Times for Computing the Polynomial

1 core 2 core Parallel Speed-up
NumPy (I) 0.860 0.710 1.2x
NumPy(II) 0.107 0.307 0.35x
Numexpr(I) 0.061 0.036 1.7x
Numexpr(II) 0.048 0.032 1.5x

C(II) 0.013 0.013 1.0x
Numba (I) 0.731 - -
Numba (II) 0.037 - -

Compilation time for Numba: 0.321 sec
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Steps To Accelerate Your Code

In order of importance:
Make use of memory-efficient libraries (many of the current
bottlenecks fall into this category).
Apply the blocking technique and vectorize your code.
Parallelize using:

Multi-threading (using Cython, so as to bypass the GIL).
Multi-processing (via the multiprocessing module in
Python)
Explicit message passing (IPython, MPI via mpi4py).

Parallelization is usually a pretty complex thing to program, so let’s
use existing libraries first!
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Summary

These days, you should understand the hierarchical memory
model if you want to get decent performance.
Leverage existing memory-efficient libraries for performing your
computations optimally.
Do not blindly try to parallelize immediately. Do this as a last
resort!
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More Info

Ulrich Drepper
What Every Programmer Should Know About Memory
RedHat Inc.,2007

Bruce Jacob
The Memory System
Morgan & Claypool Publishers, 2009 (77 pages)

Francesc Alted
Why Modern CPUs Are Starving and What Can Be Done
about It
Computing in Science and Engineering, March 2010
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What’s Next

In the following exercises we will:
Experiment with different libraries so as to check their
advantages and limitations.
Learn about under which situations you can expect your
problems to scale (and when not!).
Answer remaining pending open questions.

Francesc Alted The Starving CPU Problem



Motivation
The Data Access Issue

High Performance Libraries
Summary

Questions?

Contact:

francesc@continuum.io
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The ’Big Iron’ Machine for Exercises

4 blades like this one:

Francesc Alted The Starving CPU Problem


	Motivation
	The Data Access Issue
	Why Modern CPUs Are Starving?
	Caches And The Hierarchical Memory Model
	Techniques For Fighting Data Starvation 

	High Performance Libraries 

