A Practical Introduction to git

Emanuele Olivetti' Rike-Benjamin Schuppner?

"Neurolnformatics Laboratory (NlLab)
Bruno Kessler Foundation (FBK), Trento, Italy
Center for Mind and Brain Sciences (CIMeC), University of Trento, Italy
http://nilab. fbk.eu
olivetti@fbk.eu

2Hu-Berlin / BCCN Berlin, Germany
http://debilski.de
rikebs@debilski.de

Summer School
“Advanced Scientific Programming in Python”
Physik-Institut der Universitat Zirich, Switzerland
1-6 September 2013

http://nilab.fbk.eu
olivetti@fbk.eu
http://debilski.de
rikebs@debilski.de

Outline

m Version Control: git.
m Scenario 1: single developer, local repository.
m Demo single+local
m Scenario 2: Team of developers, central remote
repository. Minimalistic.
m Demo multi+remote
m Scenario 3: Contributing to a Software Project hosted on
GitHub.

m Extras: how to set up central repo.

59

Version Control: Naming & Meaning

Wikipedia
“Revision control, also known as version control, source control
or software configuration management (SCM), is the

management of changes to documents, programs, and other
information stored as computer files.”

Popular Acronyms:
m VC
m SCM
Misnomer:
m Versioning

Q: have you ever used VC? (raise your hand = YES)

/59

Version Control: Local, Centralized, Distributed

Local Computer
Server Computer

Checkout

Mersion Database

N - Version Database
(file)——C Version 3)
e
|

Computer A Central VCS Server f \

Computer A Computer B
Checkout N
Version Database
G| — i
N
-
Computer B
I
Checkout 1
o ‘version 1
e

From Pro Git, S.Chacon 2009, CC 3.0 license.

4/59

Survey: git

m Q1: Have you heard about git?
m Q2: Do you use git?

m Q3: Why the “git” name? (from git FAQ)

Random three-letter combination that is pronounceable.

Acronym (global information tracker).
Irony.

59

git? Why “git”?

Linus Torvalds: “/ name all http://www.merriam-webster.
my projects after myself. com/dictionary/git
First Linux, now git.” 1git W) noun Vo

Definition of GIT

British 1 a foolish or worthless person

Ex of GIT

= That git of a brother of yours has ruined everything!

= <oh, don't be such a silly git, of course your mates want
you around>

Origin of GIT

variant of get, term of abuse, from det

First Known Use: 1929

Related to GIT

Synonyms: berk [British], booby, charlie (also charley)

[British], cuckoo, ding-a-ling, dingbat, ding-dong, dipstick,

doofus [slang], featherhead, fool [British], goose, half-wit,
jackass, lunatic, mooncalf, nincompoop, ninny,

ninnvhammer nit [chieflv Britich] nitwit AUt nutcase simp 6/P9

http://www.merriam-webster.com/dictionary/git
http://www.merriam-webster.com/dictionary/git

git

git
usage: git [OPTIONS] COMMAND [ARGS]

The most commonly used git commands are:

add Add file contents to the index
commit Record changes to the repository
diff Show changes between commits, commit

git help <command>

git status

git

Introduce yourself to git:

git config —-—-global user.name "Emanuele Olivetti"

git config —-—global user.email "olivetti@fbk.eu"

59

git. Single developer + local repository.

Scenario 1: single developer + local repository.

/59

Single+Local git. Motivations.

m Q: do you use VC for local repo?

m Why VC for single developer + local repository?
m First step towards a shared project.
m Backup.

m To keep the memory of your work.

10/59

Single+Local git. Init.

git init

m Creates an empty git repository.
m Creates the git directory: .git/

working staging
directory area

Note: it is safe. It does not change your pre-existing files.

11/59

Single+Local git. The tracking process.

git add <filename>

working directory

git add

staging area

git commit

master

git commit -m "Let us begin."

Wikipedia

“A staging area is a location where organisms, people,
vehicles, equipment or material are assembled before use”.

12/59

Single+Local git. Add.

git add filel [file2 ...]

m Adds new files for next commit.

m Adds content from working dir to the staging area (index)
for next commit.

m DOES NOT add info on file permissions other than
exec/noexec (755 / 644).

m DOES not add directories per se.

working staging
directory area

13/59

Single+Local git. Commit.

git commit [-m "Commit message."]

Records changes from the staging area to master.
working staging
directory area

14/59

Single+Local git. Commit.

git commit filel file2

Records all changes of £ilel, £ile2 from working dir and
staging area to master.

working staging
directory area

git commit -a

Records all changes in working dir and staging area. Be
Careful!

15/59

Single+Local git. Commit names. OPTIONAL

m Every commitis a git-object.
m The history of a project is a graph of objects referenced by
a 40-digit git-name: SHA1(object).
m SHA1(object) = 160-bit Secure Hash Algorithm.
m Examples:
$ git commit README -m "Added README."
[master dbb4929] Added README.
1 files changed, 1 insertions (+),
or
$ git log
commit dbb49293790b84f0bdcd74£d9fabcabl. ..

Author: Emanuele Olivetti <olivetti@fbk.eu>
Date: Wed Sep 15 00:08:46 2010 +0200

16/59

Single+Local git. Diff.

git diff

Shows what changes between working directory and staging
area (index).

working staging
directory area

17/59

Single+Local git. Diff. OPTIONAL

Q: “git add”then “git diff”. What output?

git diff --cached shows differences between index and
last commit (HEAD).

working staging
directory area

18/59

Single+Local git. Logs.

git log

Shows details of the commits.

working staging
directory area

git
log

19/59

Single+Local git. Logs.

gitk

GUI to browse the git repository.

Merge rsync: tfrs;n: kernel nrgtpun/s:mmnux/kernelfglvg

[PATCH] USE: Rdi_sio: avoid lnsing received data in fty-1

[FATCH] USE: fix uh issues

[FATCH] PCI Hotplug: fix CPCI reference counting bug

[1464] Fix race condition in the ri_sigprocmask fastcall

Merge master kernel.org:rhomes/rmk/linus-2.6-arm

[PATCH] sg traverse fix for __atapi_pio_bytes()

[PATCH] sata_sil: Fix FIFO PCI Bus Arbitration kernel oo
[FATCH] ARM: Remove zero-byte sized file

terge rsynci/rsync kemnel org/pub/scmdlinuxkernel/git'daven

* [PRT_SCHED): Fix numeric comparison in meta ematch

—teee

Ll 11y @1us i1 aius e ppL 2 £ st iy
Linus Torvalds <torvalds@ppes70.osdl.orgs
1an Abhott <abboti@mey.co.uks

Pete Zailcev <zaitcev@redhat.com=

Scolt Murray <scoim@somanetworks.com=
Christoph Lameter <clameter@sygi.com=
Linus Torvalds <torvalds@ppc970.0sdl.org>
Albert Lee <albertcc@tw.ibm. coms

Jens Axhoe <axhoe@suse des

Russell King <rmk@dyn-B7.arm.linus.org.uks
Linus Torvalds <torvalds@ppea70.osdl orgs
Thomas Graf <tgrafi@suug.ch=

BHAT 1D:

Author . Pete Zaitcev <zaitcev@redhat com> 2005-06-06 14 54:59
Committer: Greg Rrosh-Hartwen <gregkhBsuse.des 2005-06-08 02:38:11

[PATCH] USB: fix ub issues

This smoothes two imperfections:
- Increase rumber of LUNs per device from 4 to 9. The hest solution

! (Al files
driversilockiub.c

would be to remowe this limit altogether, but that has to wait until

the time when more than 26 hosts are allowed
- Replace mdelay with mslecp in = probing routine.

Signed-off-by. Pete Zaitcev <zaitceveyshoo.com>
Signed-off-by: Greg Krosh-Hartmen <gregkhGsusc. des

20

59

Single+Local git. “How to clean this mess??” OPT.

git checkout <filename>

Get rid of what changed in <£ilename> (between working dir
and staging area).

working staging
directory area

21/59

Single+Local git. Time travelling. OPTIONAL

Back to the past when you did commit dbb49293790b84. . .

git checkout dbb4929
...and now, back to the present!

git checkout master

22/59

Single+Local git. “How to clean this mess??”. OPT.

First read carefully git status. If you panic:
git reset —--hard HEAD

Restore all files as in the last commit.
working staging
directory area

Warning: reset can destroy history!

23/59

Single+Local git. (Re)move. OPTIONAL

Warning: whenever you want to remove, move or rename a
tracked file use git:

git rm <filename>
git mv <oldname> <newname>

Remember to commit these changes!

git commit -m "File (re)moved."

24/59

Single+Local git. Demo.

Demo: demo_git_single_local.txt

25/59

multi+remote/shared git.

Scenario 2: multiple developers + remote central repository.

26/59

multi+remote/shared git.

shared repository

developer developer developer

27/59

multi+remote/shared git.

Local) Remote
i - remote/ :
working staging master origin/] master
directory area master .

R
o) |

u =" s = 9ae
28/59

multi+remote/shared git.

git clone <URL>

Remote
:

29/59

multi+remote/shared git.

git clone <URL>

Creates two local copies of the whole remote repository.

Local) Remote
working staging remote/
i master origin/] master
directory area origin/ :
}<lj git clone

Available transport protocols:
m ssh://,git://,http://, https://, file://
EX.: git clone https://github.com/ASPP/pelita.git

git remote -v

shows name and URL of the remote repository.

30/59

multi+remote/shared git. Fetch.

git fetch

m Downloads updates from remote master to local remote
master.

m The local master, staging area and working directory do
not change.

Local) Remote
- i remote/ :
working staging master origin/ h
directory area master !
‘ }(git fetch

Q: Why origin?

A: Just a label for Remote. Choose the one you like.

31/59

multi+remote/shared git. Merge.

git merge

m Joins development histories together.
m Warning: can generate conflicts!
m Note: it merges only when all changes are committed.

Local) Remote
- i mote/ :
working staging master r:’igi"/ :
directory area master !

git fetch + git merge =git pull

32/59

multi+remote/shared git. Conflicts.

Conflict!

<<<<<<K< yours:sample.txt
Conflict resolution is hard;
let’s go shopping.

Git makes conflict resolution easy.
>>>>>>> theirs:sample.txt

33/59

multi+remote/shared git. Conflicts.

How to resolve conflicts.
See where conflicts are:
git diff
Edit conflicting lines.
Add changes to the staging area:
git add filel [...]
Commit changes:

git commit -m "Conflicts solved."

34/59

multi+remote/shared git.

git push

m Updates remote masters (both Local and Remote).
m Requires fetch+merge first.

Local . Remote
orkin, stagil iSmote] :
working aging master origin/ | master
directory area e]

35/59

multi+remote/shared git.

Demo: demo_git_multi_remote.txt.

Other related files:
B create_remote_repo_sn.sh
B collaboratorl.sh
B collaborator2.sh
B collaborator2.sh

36/59

Contributing through GitHub

Scenario 3: contributing to a software project hosted on GitHub.

37/59

Contributing through GitHub

Q: Have you ever heard of GitHub?

& =P [& Github,inc (us) qithub.com, -@ ® & - B~ a &
GitHub = repository Explore Features Enterprise Blog sign in
numpy / numpy % Star 917 b Fork ass

Numpy main repository http://www.numpy.org
<> Code
10,000+ 12 7 142
Issues

E s branch: master - numpy /[@ Pull Requests

Merge pull request #3636 from charris/fix-nanfunction-deprecations == Wiki

What is GitHub?

m Wikipedia: “GitHub is a web-based hosting service for
software development projects that use git”.

m 5 millions repositories (Jan 2013).
m Commercial...
m ...but friendly to Free / Open Source software projects.

38/59

Contributing through GitHub

Assumptions

m You use a software and feel ready to contribute to it.
m The software project is hosted on http://github.com

Intuitive Idea

m You do not push your changes to the main repository.

m Instead you create a public copy (fork) of the main
repository...

m ...and then push your changes to that.

m Then you ask the owners of the main repository if they like
your changes and want to merge them (pull request).

39/59

http://github.com

Contributing through GitHub. Not for everyone ;-)

I 'I/ 'yI

https://github.com/torvalds/linux/pull/17

@ torvalds commented
I don't do github pull requests.

github throws away all the relevant information, like having even a
valid email address for the person asking me to pull. The diffstat is
also deficient and useless.

Git comes with a nice pull-request generation module, but github
instead decided to replace it with their own totally inferior version.
As a result, | consider github useless for these kinds of things. It's
fine for *hosting*, but the pull requests and the online commit
editing, are just pure garbage.

I've told github people about my concerns, they didn't think they
mattered, so | gave up. Feel free to make a bugreport to github.

Linus

40/59

https://github.com/torvalds/linux/pull/17

Contributing through GitHub: Recipe |

Register on http://github.com
Visit the GitHub page of the software project and Fork it:

€& = [@ cithub,inc (us) github.com, @ ® 4 - [B- cooge a &

GitHub This repository = Sea e a commar Explore Features Enterprise Blog Sign in

numpy / numpy * su

Numpy main repository http:/www.numpy.org

<> Code |
10,000+ 12 7 142

Issues

1 branch: master - numpy /[@ Pull Requests

Merge pull request #3636 from charris/fix-nanfunction-deprecations + Wiki

Clone your copy of the project on your computer.

git clone gitRgithub.com:<login>/<project>.git
Create a branch to host your improvements.
B git branch <new-feature> oo maver -
B git checkout <new-feature>

41/59

http://github.com

Contributing through GitHub: Recipe |l

Add your improvements.
B git add <new-file>
B git commit -m ...
A Push your improvements.
git push origin <new-feature>

11 cCompare & pull request

Send a pull request.

Write Preview Comments are parsed with GitHub Flavered Markdow

selecting them

42/59

Contributing through GitHub

Detailed Explanation

43/59

Contributing through GitHub: Detailed Explanation

Remote / Upstream

There is a software project hosted on remote GitHub repository
(upstream). You want to improve it.

44/59

Contributing through GitHub: Detailed Explanation

Remote / Upstream

master

Remote / Origin

So you fork it by creating a (remote) copy of it:
git clone —--bare <UPSTREAM URL>

45/59

Contributing through GitHub: Detailed Explanation

Local Remote / Upstream

Remote / Origin

remote/
master origin/
master

working staging
directory area

<

Now you clone your copy on your local computer:
git clone <ORIGIN_URL>

46/59

Contributing through GitHub: Detailed Explanation

Local Remote / Upstream
remote/
upstream/ 4
master

Remote / Origin

remote/
master origin/
master

working staging
directory area

git remote add upstream <UPSTREAM URL>
git fetch upstream

47/59

Contributing through GitHub: Detailed Explanation

Local Remote / Upstream
remote/
upstream/
master

Remote / Origin

remote/
master origin/
master
working staging

git branch new-feature upstream/master
git checkout new-feature

48/59

Contributing through GitHub: Detailed Explanation

Local Remote / Upstream
remote/
upstream/ master
master

Remote / Origin

remote/
master origin/
master

git add ...
git commit ...

working staging
directory area

49/59

Contributing through GitHub: Detailed Explanation

Local Remote / Upstream
remote/
upstream/
master

Remote / Origin

remote/
master origin/
master
remote/
new-feature origin/ new-feature
new-feature

publish your new feature:
git push origin new-feature

working staging
directory area

50/59

Contributing through GitHub: Detailed Explanation

Local Remote / Upstream
remote/

upstream/ ‘
master

Remote / Origin

remote/
master origin/
master
remote/
new-feature origin/ new-feature
new-feature

Notify the owners of the main repository about new-feature
they: git fetch + (eventually) git merge

working staging
directory area

51/59

Setting up a remote+shared repository. OPTIONAL

GOAL: | want to share my local repository so others can push.

“Why can't | just extend permissions in my local repo?”
m Yes you can...
m ...but your colleagues will not push (read-only).

To have it read-write: set up a remote shared repository.

shared repository

developer developer developer

52/59

Setting up a remote+shared repository. OPTIONAL

You have a local repository and want to share it (ssh) from a
remote server on which your colleagues already have access.

On remote server create bare+shared repository:

B mkdir newproject

m set up proper group permissions: chmod g+rws
newproject

B cd newproject

B git ——bare init --shared=group

On local machine push your repository to remote:

B git remote add origin

ssh://remote.com/path/newproject

B git push -u origin master

53/59

Setting up a remote+shared repository. OPTIONAL

Demo: demo_git_setup_remote.txt.

54/59

Repositories available for you

git clone

PacMan!

https://github.com/ASPP/pelita.git
Your personal git repository (empty):
<username>(@python.g-node.org:/git/<username>
Your group<X> git repository (empty):

<username>@python.g-node.org:/git/group<X>

|

Q1: Why “<repo> o

Just a reminder about the repository being bare.

Q2: Why “ssh://<URL>/" vs. “<URL>:" ?

absolute vs. relative (to home) path.

55/59

https://github.com/ASPP/pelita.git
<username>@python.g-node.org:/git/<username>
<username>@python.g-node.org:/git/group<X>

Repositories available for you

Improve your experience during the Python school:
B git clone <login>@python.g-node.org:/git/schoolstd
B cd schoolstd

B source improver.sh

56/59

Credits

m Zbigniew Jedrzejewski-Szmek
Tiziano Zito
Bastian Venthur
http://progit.com

lwn.net

[|

|

|

H apcmag.com
|

B http://www.markus—-gattol.name/ws/scm.html
|

http://matthew-brett.github.io/pydagogue/
gitwash/git_development.html

57/59

http://progit.com
apcmag.com
lwn.net
http://www.markus-gattol.name/ws/scm.html
http://matthew-brett.github.io/pydagogue/gitwash/git_development.html
http://matthew-brett.github.io/pydagogue/gitwash/git_development.html

| want to know more about git!

Understanding how git works:

m git foundations, by Matthew Brett:
http://matthew-brett.github.com/pydagogue/
foundation.html

m The git parable, by Tom Preston-Werner:
http://tom.preston-werner.com/2009/05/19/
the-git-parable.html

Excellent guides:
m “Pro Git” book: http://git-scm.com/book (FREE)
B git magic: http://www-cs-students.stanford.
edu/~blynn/gitmagic/
Contributing to a project hosted on GitHub:

m “Gitwash”, by Matthew Brett:
http://matthew-brett.github.io/pydagogue/
gitwash/git_development .html

58/59

http://matthew-brett.github.com/pydagogue/foundation.html
http://matthew-brett.github.com/pydagogue/foundation.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://git-scm.com/book
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://matthew-brett.github.io/pydagogue/gitwash/git_development.html
http://matthew-brett.github.io/pydagogue/gitwash/git_development.html

Cool Stuff

Gource:

http://code.google.com/p/gource/

59/59

http://code.google.com/p/gource/

