Efficient Memory
Management

How | Learned to Stop Worrying about CPU Speed
and Love Memory Access

Francesc Alted
Continuum Analytics

Advanced Scientific Programming in Python, Kiel (Germany)
September 6,2012

Ay, CONTINUUM
)
U=

http://www.euroscipy.org/talk/6602
http://www.euroscipy.org/talk/6602
http://www.euroscipy.org/talk/6602
http://www.euroscipy.org/talk/6602
https://python.g-node.org/wiki/
https://python.g-node.org/wiki/

Overview

® Motivation

® [he Data Access Issue

® Why Modern CPUs Are Starving
® Caches And The Hierarchical Model
® Techniques For Fighting Data Starvation

® Optimal Containers for Big Data

Motivation

Computing a
Polynomial

We want to compute the next polynomial:

0.25x3 + 0.75x2 + 1.5x - 2

in the range [-1,] with a step size of 2*10-/
in the x axis

...and want to do that as FAST as possible...

Using NumPy

import numpy as np
N = 10%1000x1000
X = np.linspace(-1, 1, N)

y = «25%X*¥%k3 + 75kxkk2 — 1.5%Xx — 2

That takes around |.60 sec on some machine
(Intel Xeon E5520 @ 2.3 GHz). How to make it
faster?

'Quick & Dirty’ Approach:
Parallelize

Computing a polynomial is “embarrassingly”
parallelizable: just divide the domain to compute in N
chunks and evaluate the expression for each chunk.

This can be easily implemented in Python by using
the multiprocessing module (so as to bypass the
GIL). See poly—-mp.py script.

Using 2 cores, the 1.60 sec is reduced down to [.18
sec, which is a |.35x improvement. Not bad.

We are done! Or perhaps not!

A Better Approach:
Optimize

The NumPy expression:
() 0.25x3 + 0.75x%2 + 1.5x - 2
can be rewritten as:

() ((0.25x + 0.75)x + 1.5)x - 2

* Exec time goes from 1.60 sec to 0.30 sec
* Much faster (4x) than using two processors
with the multiprocessing approach (1.18 sec).

First Lesson To Be
Learned

® Do not blindly try to parallelize right away:
Optimizing normally gives better

results

And a serial codebase is normally much
easier to code and debug!

Use numexpr

Numexpr is a |IT compiler, based on NumPy,
that optimizes the evaluation of complex
expressions. Usage is simple:

import numpy as np
import numexpr as ne

N = 10+«1000x1000
X = np.linspace(-1, 1, N)
y = ne.evaluate(”.25%x**3 + .75%kx**x2 — 1.5%x — 2")

This takes 0.14 sec to complete (| Ix faster
than the original NumPy: |.60 sec)

Fine Tuning numexpr

Numexpr is also sensible to computer-
friendly expressions like:

() ((0.25x + 0.75)x + 1.5)x - 2

* This takes 0.1 | sec (3x faster than NumPy)

* 0.14 sec were needed for the original
expression, that's a 25% faster

Time (s)

1,8
1,6
1,4
1,2

0,8
0,6
0,4
0,2

Time to evaluate polynomial (1 thread)

25" X**3 + . 75°X™2 - 1.5"x - 2

I

((.25*x + .75)"x - 1.5)*x — 2

B NumPy
B Numexpr

Power Expansion

Numexpr expands expression:

0.25%xk*k3 + 0.75%kxX*k%2 + 1.5%x - 2
to:

0.25%)XkXkX + 0.75%X%kX + 1.5%XkXx = 2

so, no need to use the expensive pow()

One Remaining
Question

Why numexpr can execute this expression:
((0.25x + 0.75)x + 1.5)x - 2
3x faster, even using a single core!

Short answer: making a more efficient
use of the memory resource

The Starving CPU
Problem

The Starving CPU
Problem

® Current CPUs typically stay bored, doing
nothing most of the time

® Why so!

® Because they are waiting for data

Memory Access Time
vs CPU Cycle Time

1000
TIE s o —

. - - et - L ——

o WS -—a——2-=

g —
c 10 -~ Q, _9
3 a9
@ | S
» |
O 1 e
@© @
c

o
¢

»

| ©

0.01 ¢ T Y Y T T Y T T T T T
— — —_ -t — — —_ — -t N N N
w0 w w w w (o] (o) (o] (o] o o =
(o] (o] [o4] (o4] w (o] (o) ({e] (o) o o o
N (63} ~J (o) b w (4)} -~ (o) . w (6)}

Y
£
=M

emory Access Time ¢ CPU Cycle Time A Multi Core Effective Cycle Time

2002 -

Quote Back in 1993

“We continue to benefit from tremendous increases in the raw speed of
microprocessors without proportional increases in the speed of memory.
This means that 'good' performance is becoming more closely tied to
good memory access patterns, and careful re-use of operands.”

“No one could afford a memory system fast enough to satisfy every
(memory) reference immediately, so vendors depends on caches,
interleaving, and other devices to deliver reasonable memory

pberformance.”

— Kevin Dowd, after his book “High Performance Computing’,
O'Rellly & Associates, Inc, 1993

Quote Back in 1996

“Across the industry, today’s chips are largely able to execute code
faster than we can feed them with instructions and data. There are no
longer performance bottlenecks in the floating-point multiplier or in
having only a single integer unit. The real design action is in memory
subsystems— caches, buses, bandwidth, and latency.”

“Over the coming decade, memory subsystem design will be the only
important design issue for microprocessors..”

— Richard Sites, after his article “It's The Memory, Stupid!”,
Microprocessor Report, 10(10),1996

.& MORGAN&; CLAYPOOL PUBLISHERS

The Memory System

You Can'’t Avoid It
You Can't Ignore It,
You Can't Fake It

Bruce Jacob

SYNTHESIS LECTURES ON

CoMPUTER ARCHITECTURE

The Status of CPU
Starvation in 2012

® Memory latency is much slower (between
250x and 500x) than processors.

® Memory bandwidth is improving at a better
rate than memory latency, but it is also
slower than processors (between 30x and

| 00x).

CPU Caches to the
Rescue

® CPU cache latency and throughput
are much better than memory

® However: the faster they run the
smaller they must be

CPU Cache Evolution

Up to end 80’s 90’s and 2000’s 2010’s

.? —
9
S
(0]

When CPU Caches Are
Effective!?

Mainly in a couple of scenarios:

® Time locality: when the dataset is
reused

® Spatial locality: when the dataset is
accessed sequentially

Time Locality

Parts of the dataset are reused

Cache

Memory (C array)

Spatial Locality

Dataset is accessed sequentially

Good!

QO|O®|®]| Line l
Q@O @® @®|Line2
Bad Cache

Memory (C array)

The Blocking Technique

When accessing disk or memory, get a contiguous block that fits
in CPU cache, operate upon it and reuse it as much as possible.

Dataset A

C = A <oper>B

Dataset B

CPU Dataset C

Use this extensively to leverage
spatial and temporal localities

Time (s)

1,8
1,6
1,4
1,2

1
0,8
0,6
0,4
0,2

0

Time To Answer
Pending Questions

Time to evaluate polynomial (1 thread)

25"x**3 + . 75"x*2 -1.5*x - 2

I

((.25"x + .75)*x - 1.5)*x - 2

B NumPy
B Numexpr

Computing "a*b+c" with NumPy. Temporaries goes to memory.

Gkl T
cache
7

C a*b+c

memory

a*b

Computing "a*b+c" with Numexpr. Temporaries in memory are avoided.

=

cache

a b C a*b+c

memory

a*b

Multithreaded numexpr
and Beyond: Numba

Time

numexpr Allows

Multithreading for Free

0,16
0,14
0,12
0,1
0,08
0,06
0,04
0,02
0

numexpr with 16 (logical) cores

B .25"X™3 + .75"x*2 - 1.5"°x — 2
W ((.25"x + .75)"'x - 1.5)'x - 2
X

l"llliluulu

1234567 8 910111213141516

Time (s)

0,6
0,5
0,4
0,3
0,2

0,1
0

Transcendental
Functions

numexpr with 16 (logical) cores

1234567 8 910111213141516

W 25" 3 + .75"°x™2 - 1.5"x - 2
W ((.29"x +.75)*x - 1.9)*X — 2

X
M sin(x)**2+cos(x)**2

CPU bounded!

Numexpr Limitations

® Numexpr only implements element-wise
operations,i.e. ‘a*b’ is evaluated as:

for 1 1n range(N):
c[i] = a[i] * b[i]
® |n particular, it cannot deal with things like:

for 1 1n range(N):

c[i] = a[1-1] + a[1] * b[1]

Numba: Overcoming
numexpr Limitations

® Numba is a JIT that can translate a subset
of the Python language into machine code

® |t uses LLVM infrastructure behind the
scenes

® Can achieve similar or better performance
than numexpr, but with more flexibility

How Numba VWorks

Python Function Machine Code
LLVM-PY

LLVM 3.1

Numba Example:
Computing the Polynomial

from numba import d
from numba.decorators import jit as jit
import numpy as np

N = 10x1000%1000
X = np.linspace(-1, 1, N)
y = np.empty(N, dtype=np.float64)

@jit(arg_types=I[d[:], d[:1])
def poly(x, y):
for i in range(N):
yli]l = 0.25%x[1i]*%3 + 0.75xx[1i]*%x2 + 1.5%xx[i] - 2
y[i] = ((0.25%xx[i] + @0.75)*x[i] + 1.5)*x[i] - 2

poly(x, y) # run through Numba!

Times for Computing the
Polynomial (In Seconds)

Poly version (1) (I1)

Numpy 1.086 0.505
numexpr 0.108 0.096
Numba 0.055 0.054
Pure C, OpenMP 0.215 0.054

* Compilation time for Numba: 0.019 sec
 Run on Mac OSX, Core2 Duo @ 2.13 GHz

Second Lesson of the
Day
® Before trying to optimize yourself:

Be aware about existing libraries
out there

It is pretty difficult to beat performance
professionals!

Optimal Containers for
Big Data

The Need for a Good
Data Container

® Joo many times we are focused on
computing as fast as possible

® But we have seen how important data
access Is

® Hence, having an optimal data structure is
critical for getting good performance when
processing very large datasets

NumPy: A De Facto
Data Container

NumPy is the standard de facto in-memory
container for Big Data applications in the
Python universe

NumPy Advantages

Multidimensional data container
Efficient data access
Powerful weaponry for data handling

Efficient in-memory storage

Rl <SANVIDIA. % L
R % (o™ scikits-image
L] (é} image processing in python

PyOpenCL

EM StatsModlels
Statistics int @y’cb«on

=

earning in Python CO N TI N U U M

ANALYTICS

‘ machine |

NumPy As an Efficient
Data Container

Python container: : containe
List of tuples Structured array

(,
(||||||||||,
(||||||||||

Faster creation time
No fragmentation
One data byte ~ one in-memory byte

Nothing Is Perfect

® The NumPy container is just great for many
use cases

® However, it also has its own deficiencies:

® Not efficient for appending data (so data
containers tend to be static)

® Cannot deal with compressed data transparently

Appending Data in
Large NumPy Objects

COP)"

new data to append / New memory

allocation

* Normally a realloc() syscall will not succeed
* Both memory areas have to exist simultaneously

carray

® carray is a data container that can be used
in a similar way than the one in NumPy

® The main difference is that data storage is
chunked, not contiguous

® Containers can be enlarged without
copying the original container

Contiguous vs Chunked

NumPy container carray container

Contiguous memory Discontiguous memory

Why Chunking!?

® Chunking means more difficulty handling
data, so why bother?

® Efficient enlarging and shrinking

® Compression is possible

Appending data in
carray

. array to be enlarged . final array object

—*—

compress E

new data to append | === new chunk

Only a small amount of data has to be compressed

Why Compression!?

Lets you store more data
using the same space

Uses more CPU, but CPU
time is cheap

Overall, it can make I/O
faster

Original
dataset

Disk

Disk interface

Decompression

D Al

Memory (RAM)

Why Blosc?

Original Compressed
dataset dataset

Memory (RAM)

Bus Memory

Decompression

-

CPU Cache

Transmission + decompression faster than direct transfer?

Blosc Performance:
Laptop back in 2005

Decompression speed (256.0 MB, 8 bytes, 19 bits)

100

250

200

IMB/s)

[
W

Speed

100

o9 | threads

0 2 4 6 8 10
Compresssion ratio

Blosc Performance:
Desktop Computer in 2012

Decompression speed (256.0 MB, 8 bytes, 19 bits)

35000 ? > ? .
| ‘ | ; ; - | &—® 1 threads
> 3 : | . | ¥—¥ 2 threads
30000 e ,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,, — 76! ,,,,,,,,,,,,,,,,,, k4 3 threads |
: ‘ 1 | = 4 threads
‘ ‘ - | =< 5 threads
25000} y ,: ,,,,,,,, ‘ 777777777777777777 D>—p> 6 threads i
‘ : : : . | < 7 threads
— 8 threads
@ 20000} — 9threads ||
= B8 10 threads
= @—@ 11 threads
32 ¥—v 12 threads
& 15000f- :
10000 oo . B SO
5000f- ﬁ -
0 I I I 1 I I I
0 1 2 3 4 5 6 7 8

Compresssion ratio

Capacity

Accelerating |1/O

Other
compressors
} Blosc

carray Objects Can Use
Memory *Or* Disk

® Starting with version 0.5, carray has
transparent support for data on disk too

® The format is based in ‘bloscpack’, a format
for keeping data persistently (thanks to
Valentin Haenel)

® Jo create a disk-based carray, just add the
‘rootdir parameter and you are done

Out-Of-Core
Computations

® Due to the addition of the persistency,
carray can perform out-of-core
computations seamlessly

® Supports different Virtual Machines:
® Plain Python
® numexpr (so you can use multicores)

® Numba (in the future)

How carray Does Out-
Of-Core Computations

Dataset 1 Dataset 2 Result
Chunk 1 ® Chunk 1 @ Chunk 1 A—
Chunk 2 Chunk 2 Chunk 2
. Disk
Chunk N Chunk N (compressed data) | Chunk N
Chunk 1 Y Chunk 1 \/ , Chunk 1
Blockl @ Blockl @ Fi IeSyStem Block 1 A
Block 2 Block 2 CaChe Block 2
. _ (in-memory) N
Block N Block N (compressed data) | Block N
Blosc decompression Blosc compression
Block 1 Block 1 Block 1
CPU cache
T (uncompressed data)

|
Virtual Machine : Python, numexpr, Numba

The ctable object

TP

NN KNt 7/

« New row to append

* Columns are actual carrays

* Chunks follow column order

* Very efficient for querying (specially with a
large number of columns)

Quick Glimpse at
carray

Creating carrays
Making them persistent
Operating with carrays
Creating a ctable
Querying ctables

Getting results out of queries

Last Lesson for Today

® Big data is tricky to manage:

Look for the optimal containers for
you data

Spending some time choosing your

appropriate data container can be a big time
saver in the long run

The End

Steps to Accelerate
Your Code

® Make use of memory-efficient libraries
(many of your bottlenecks will fall here)

® Apply the blocking technique and vectorize
your code

® Parallelize (if you can) using:
® Multi-threading

® Explicit message passing

Summary

® Nowadays you should be aware of the
memory system for getting good
performance

® | everage existing memory-efficient libraries
for performing computations optimally

® Use the appropriate data containers for
your different use cases

Getting More Info

® Francesc Alted — Why modern CPUs are

starving and what can be done about it
http://www.pytables.org/docs/CISE-12-2-ScientificPro.pdf

® David M. Cook, Francesc Alted — How
Numexpr works

http://code.google.com/p/numexpr/wiki/Overview

® Francesc Alted — carray manual

http://carray.pytables.org/docs/manual

http://www.pytables.org/docs/CISE-12-2-ScientificPro.pdf
http://www.pytables.org/docs/CISE-12-2-ScientificPro.pdf
http://carray.pytables.org/docs/manual/tutorial.html
http://carray.pytables.org/docs/manual/tutorial.html

What’s Next

In the following exercises we will:

® Experiment with the numexpr library, and
how it scales in a multicore machine

® | earn when your problem is CPU-
bounded or memory-bounded

® Do some queries on very large datasets
by using NumPy and carray

