
Software carpentry

From theory to practice: Standard tools

Pietro Berkes, Enthought Ltd.

Python tools for agile programming

 There are many tools, based on command line or graphical

interface

 I‟ll present:

 Python standard “batteries included” tools

 no graphical interface necessary

 magic commands for ipython

 Alternatives and cheat sheets are on the wiki

Pietro Berkes, 12/9/2011Software carpentry: tools2

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest

coverage.py

pdb

cProfile

timeit

runSnake

Pietro Berkes, 12/9/2011Software carpentry: tools3

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest

coverage.py

pdb

cProfile

timeit

runSnake

Pietro Berkes, 12/9/2011Software carpentry: tools4

Test-driven development: reminder

 Tests are crucial for scientific programming:

 Your research results depend on the code working as advertised

 You need to know if you‟re not getting the expected results

because of a bug or because your working hypothesis is wrong

 Unchecked code usually contains errors (some small, some not)

 Hopefully in the future tests will be requested for paper review

 Write test suite (collection of tests) in parallel with your code

 External software runs the tests and provides reports

and statistics

Pietro Berkes, 12/9/2011Software carpentry: tools5

Test suites in Python: unittest

 unittest: standard Python testing library

 Each test case is a subclass of unittest.TestCase

 Each test unit is a method of the class, whose name starts with
„test‟

 Each test unit checks one aspect of your code, and raises an

exception if it does not work as expected

Pietro Berkes, 12/9/2011Software carpentry: tools6

Anatomy of a TestCase

import unittest

class FirstTestCase(unittest.TestCase):

def test_truisms(self):

"""All methods beginning with ’test’ are executed"""

self.assertTrue(True)

self.assertFalse(False)

def test_equality(self):

"""Docstrings are printed during executions

of the tests in the Eclipse IDE"""

self.assertEqual(1, 1)

if __name__ == '__main__':

unittest.main()

Pietro Berkes, 12/9/2011Software carpentry: tools7

Create new file, test_something.py:

Multiple TestCases

import unittest

class FirstTestCase(unittest.TestCase):

def test_truisms(self):

self.assertTrue(True)

self.assertFalse(False)

class SecondTestCase(unittest.TestCase):

def test_approximation(self):

self.assertAlmostEqual(1.1, 1.15, 1)

if __name__ == '__main__':

execute all TestCases in the module

unittest.main()

Pietro Berkes, 12/9/2011Software carpentry: tools8

Fixtures

Pietro Berkes, 12/9/2011Software carpentry: tools9

 Tests suites often require an initial state or test context to

execute a number of test cases. This fixed context is known as

a fixture.

 Examples of fixtures:

 Creation of a data set at runtime

 Loading data from a file or database

 Creation of mock objects to simulate an interaction with complex

objects

setUp and tearDown

import unittest

class FirstTestCase(unittest.TestCase):

def setUp(self):

"""setUp is called before every test"""

pass

def tearDown(self):

"""tearDown is called at the end of every test"""

pass

... all tests here ...

Pietro Berkes, 12/9/2011Software carpentry: tools10

TestCase.assertSomething

 TestCase defines utility methods to check that some

conditions are met, and raise an exception otherwise

 Check that statement is true/false:
assertTrue('Hi'.islower()) => fail

assertFalse('Hi'.islower()) => pass

 Check that two objects are equal:
assertEqual(2+1, 3) => pass

assertEqual([2]+[1], [2, 1]) => pass

assertNotEqual([2]+[1], [2, 1]) => fail

Pietro Berkes, 12/9/2011Software carpentry: tools11

TestCase.assertSomething

 Check that two numbers are equal up to a given precision:
assertAlmostEqual(x, y, places=7)

 places is the number of decimal places to use:
assertAlmostEqual(1.121, 1.12, 2) => pass

assertAlmostEqual(1.121, 1.12, 3) => fail

Formula for almost-equality is

round(x - y, places) == 0.

and so

assertAlmostEqual(1.126, 1.12, 2) => fail

Pietro Berkes, 12/9/2011Software carpentry: tools12

TestCase.assertSomething

 Check that an exception is raised:

assertRaises(exception_class, function,

arg1, arg2, kwarg1=None, kwarg2=None)

executes
function(arg1, arg2, kwarg1=None, kwarg2=None)

and passes if an exception of the appropriate class is raised

 For example:
assertRaises(IOError,

file, 'inexistent', 'r') => pass

Use the most specific exception class, or the test may pass

because of collateral damage:
assertRaises(IOError, file, 1, 'r') => fail

assertRaises(Exception, file, 1, 'r') => pass

Pietro Berkes, 12/9/2011Software carpentry: tools13

TestCase.assertSomething

 Most of the assert methods accept an optional msg

argument that overwrites the default one:

assertTrue('Hi'.islower(),

'One of the letters is not lowercase')

 Python 2.7 introduced many new features in unittest, see

documentation online

Pietro Berkes, 12/9/2011Software carpentry: tools14

Testing with numpy arrays

 When testing numerical algorithms, numpy arrays have to be

compared elementwise:

Pietro Berkes, 12/9/2011Software carpentry: tools15

class NumpyTestCase(unittest.TestCase):

def test_equality(self):

a = numpy.array([1, 2])

b = numpy.array([1, 2])

self.assertEqual(a, b)

E

==

ERROR: test_equality (__main__.NumpyTestCase)

--

Traceback (most recent call last):

File "numpy_testing.py", line 8, in test_equality

self.assertEqual(a, b)

File

"/Library/Frameworks/Python.framework/Versions/6.1/lib/python2.6/unitt

est.py", line 348, in failUnlessEqual

if not first == second:

ValueError: The truth value of an array with more than one element is

ambiguous. Use a.any() or a.all()

--

Ran 1 test in 0.000s

FAILED (errors=1)

Testing with numpy arrays

 numpy.testing defines appropriate function:
numpy.testing.assert_array_equal(x, y)

numpy.testing.assert_array_almost_equal(x, y,

decimal=6)

numpy.testing.assert_array_less(x, y)

 If you need to check more complex conditions:

 numpy.all(x): returns true if all elements of x are true

numpy.any(x): returns true is any of the elements of x is true

 combine with logical_and, logical_or, logical_not:

test that all elements of x are between 0 and 1

assertTrue(all(logical_and(x > 0.0, x < 1.0))

Pietro Berkes, 12/9/2011Software carpentry: tools16

What to test and how

 Test with hard-coded inputs for which you know the output:

 use simple but general cases

 test special or boundary cases

class LowerTestCase(unittest.TestCase):

def test_lower(self):

each test case is a tuple of (input, expected_result)

test_cases = [('HeLlO wOrld', 'hello world'),

('hi', 'hi'),

('123 ([?', '123 ([?'),

('', '')]

test all cases

for arg, expected in test_cases:

output = arg.lower()

self.assertEqual(output, expected)

Pietro Berkes, 12/9/2011Software carpentry: tools17

Numerical fuzzing

 Use deterministic test cases when possible

 In most numerical algorithm, this will cover only over-

simplified situations; in some, it is impossible

 Fuzz testing: generate random input

 Outside scientific programming it is mostly used to stress-test

error handling, memory leaks, safety

 For numerical algorithm, it is often used to make sure one covers

general, realistic cases

 The input may be random, but you still need to know what to

expect

 Make failures reproducible by saving or printing the random seed

Pietro Berkes, 12/9/2011Software carpentry: tools18

Numerical fuzzing – example

class VarianceTestCase(unittest.TestCase):

def setUp(self):

self.seed = int(numpy.random.randint(2**31-1))

numpy.random.seed(self.seed)

print 'Random seed for the tests:', self.seed

def test_var(self):

N, D = 100000, 5

goal variances: [0.1 , 0.45, 0.8 , 1.15, 1.5]

desired = numpy.linspace(0.1, 1.5, D)

test multiple times with random data

for _ in range(20):

generate random, D-dimensional data

x = numpy.random.randn(N, D) * numpy.sqrt(desired)

variance = numpy.var(x, axis=0)

numpy.testing.assert_array_almost_equal(variance, desired, 1)

Pietro Berkes, 12/9/2011Software carpentry: tools19

Testing learning algorithms

 Learning algorithms can get stuck in local optima, the solution
for general cases might not be known (e.g., unsupervised
learning)

 Turn your validation cases into tests

 Stability tests:

 start from final solution; verify that the algorithm stays there

 start from solution and add a small amount of noise to the
parameters; verify that the algorithm converges back to the
solution

 Generate data from the model with known parameters

 E.g., linear regression: generate data as y = a*x + b + noise
for random a, b, and x, then test that the algorithm is able to
recover a and b

Pietro Berkes, 12/9/2011Software carpentry: tools20

Other common cases

 Test general routines with specific ones

 Example: test polyomial_expansion(data, degree)

with quadratic_expansion(data)

 Test optimized routines with brute-force approaches

 Example: test z = outer(x, y) with

Pietro Berkes, 12/9/2011Software carpentry: tools21

M, N = x.shape[0], y.shape[0]

z = numpy.zeros((M, N))

for i in range(M):

for j in range(N):

z[i, j] = x[i] * y[j]

Example: eigenvector decomposition

 Consider the function values, vectors = eigen(matrix)

 Test with simple but general cases:

 use full matrices for which you know the exact solution
(from a table or computed by hand)

 Test general routine with specific ones:

 use the analytical solution for 2x2 matrices

 Numerical fuzzing:

 generate random eigenvalues, random eigenvector; construct the matrix;
then check that the function returns the correct values

 Test with boundary cases:

 test with diagonal matrix: is the algorithm stable?

 test with a singular matrix: is the algorithm robust? Does it raise
appropriate error when it fails?

Pietro Berkes, 12/9/2011Software carpentry: tools22

DEMO

Pietro Berkes, 12/9/2011Software carpentry: tools23

Code coverage

 It‟s easy to leave part of the code untested

Classics: feature activated by keyword argument, exception

raised for invalid input

 Coverage tools mark the lines visited during execution

 Use together with test framework to make sure all your code

is covered

Pietro Berkes, 12/9/2011Software carpentry: tools24

coverage.py

 Python script to perform code coverage

 Produces text and HTML reports

 Allows branch coverage analysis

 Not included in standard library, but quite standard

Pietro Berkes, 12/9/2011Software carpentry: tools25

DEMO

Pietro Berkes, 12/9/2011Software carpentry: tools26

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest

coverage.py

pdb

cProfile

timeit

runSnake

Pietro Berkes, 12/9/2011Software carpentry: tools27

Debugging

 The best way to debug is to avoid bugs

 Your test cases should already exclude a big portion
of the possible causes

 Don‟t start littering your code with print statements

 Core idea in debugging: you can stop the execution of
your application at the bug, look at the state of the
variables, and execute the code step by step

Pietro Berkes, 12/9/2011Software carpentry: tools28

pdb, the Python debugger

 Command-line based debugger

 pdb opens an interactive shell, in which one can

interact with the code
 examine and change value of variables

 execute code line by line

 set up breakpoints

 examine calls stack

Pietro Berkes, 12/9/2011Software carpentry: tools29

Entering the debugger

 Enter debugger at the start of a file:

python –m pdb myscript.py

 Enter in a statement or function:

 Enter at a specific point in the code (alternative to print):

import pdb

your code here

if __name__ == '__main__':

pdb.runcall(function[, argument, ...])

pdb.run(expression)

some code here

the debugger starts here

import pdb

pdb.set_trace()

rest of the code

Pietro Berkes, 12/9/2011Software carpentry: tools30

Entering the debugger from ipython

 From ipython:
%pdb – preventive

%debug – post-mortem

Pietro Berkes, 12/9/2011Software carpentry: tools31

DEMO

Pietro Berkes, 12/9/2011Software carpentry: tools32

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest

coverage.py

pdb

cProfile

timeit

runSnake

Pietro Berkes, 12/9/2011Software carpentry: tools33

Python code optimization

 Python is slower than C, but not prohibitively so

 In scientific applications, this difference is even less noticeable
(numpy, scipy, ...)

 for basic tasks, as fast as Matlab, sometimes faster

 Profiler: Tool that measures where the code spends time

Pietro Berkes, 12/9/2011Software carpentry: tools34

timeit

 Precise timing of a function/expression

 Test different versions of a small amount of code, often used in

interactive Python shell

 In ipython, you can use the %timeit magic command

from timeit import Timer

execute 1 million times, return elapsed time(sec)

Timer("module.function(arg1, arg2)", "import module").timeit()

more detailed control of timing

t = Timer("module.function(arg1, arg2)", "import module")

make three measurements of timing, repeat 2 million times

t.repeat(3, 2000000)

Pietro Berkes, 12/9/2011Software carpentry: tools35

DEMO

Pietro Berkes, 12/9/2011Software carpentry: tools36

cProfile

 standard Python module to profile an entire application
(profile is an old, slow profiling module)

 Running the profiler from command line:

options

-o output_file

-s sort_mode (calls, cumulative,name, …)

 from interactive shell/code:

import cProfile

cProfile.run(expression[,"filename.profile"])

python -m cProfile myscript.py

Pietro Berkes, 12/9/2011Software carpentry: tools37

cProfile, analyzing profiling results

 From interactive shell/code:

 Simple graphical description with RunSnakeRun

import pstat

p = pstat.Stats("filename.profile")

p.sort_stats(sort_order)

p.print_stats()

Pietro Berkes, 12/9/2011Software carpentry: tools38

cProfile, analyzing profiling results

 Look for a small number of functions that consume most of the

time, those are the only parts that you should optimize

 High number of calls per functions

=> bad implementation? consider refactoring

 High time per call

=> consider caching

 High times, but valid

=> consider parallelizing or rewriting with Cython

Pietro Berkes, 12/9/2011Software carpentry: tools39

DEMO

Pietro Berkes, 12/9/2011Software carpentry: tools40

Three more useful tools

 pydoc: creating documentation from your docstrings

pydoc [-w] module_name

 pylint: check that your code respects standards

Pietro Berkes, 12/9/2011Software carpentry: tools41

doctests

Pietro Berkes, 12/9/2011Software carpentry: tools42

 doctest is a module that recognizes Python code in

documentation and tests it

 docstrings, rst or plain text documents

 make sure that the documentation is up-to-date

 From command line:
python –m doctest –v example.py

 In a script:
import doctest

doctest.testfile("example.txt”) # test examples in a file

doctest.testmod([module]) # test docstrings in module

DEMO

Pietro Berkes, 12/9/2011Software carpentry: tools43

The End

 Exercises after the lunch break...

Pietro Berkes, 12/9/2011Software carpentry: tools44

