The Pelita contest

(a brief introduction)

The BasicDefensePlayers 0: 3 The BFSPlayers

Bot 0, Round 26

Mittwoch, 14. September 2011

Overview

The BFSPlayers 3:0 The RandomPlayers

Qum

Bot 2, Round 12

Mittwoch, 14. September 2011

Overview

» Each Team owns two Bots

Bots for team O

The BFSPlayers 3:0 The RandomPlayers

Bots for team |

Bot 2, Round 12

Mittwoch, 14. September 2011

The BFSPlayers 3: 0 The RandomPlayers

Overview

» Each Team owns two Bots

» Each Bot is controlled by a Player

e

X

Bots for team O

Bot 2, Round 12

Bots for team |

Player for team Or m

Player for team |

import random \)

1
2 ‘ 1 import randog
3 from pelita.datamodel import north, east, south, west, stop 2 ‘
4 from pelita.player import AbstractPlayer 3 from pelita.datamodel import north, east, south, west, stop
5 4 from pelita.player import AbstractPlayer
. .) 5
6 class %fjnldlrectlonaliﬁl?yer(AbstractPlayer). 6 class UnidirectionalPlayer(AbstractPlayer):
7 def get_move(self): 7 def get_move(self):
8 return west 8 return west
9 9
10 class UnidirectionalPlayer(AbstractPlayer): 10 class UnidirectionalPlayer(AbstractPlayer):
11 def get_move(self): 11 def get_move(self):
12 all_directions = self.legal_moves 12 all_directions = self.legal_moves . .
13 random_direction = random.choice(all directions) 13 random_dlrectlor_w = rgndom.cho.lce(all_dlrectlons)
- X ; : - 14 return random_direction
14 return random_direction 15 I

15 i !

Mittwoch, 14. September 2011

The BFSPlayers 3:0 The RandomPlayers

Overview

» Each Team owns two Bots
» Each Bot is controlled by a Player

» Harvester or Destroyer Bots

Bot 2, Round 12

Mittwoch, 14. September 2011

:0 The RandomPlayers

Overview

» Each Team owns two Bots

» Each Bot is controlled by a Player
» Harvester or Destroyer Bots

» Bots are Destroyers in homezone
» Harvesters in enemy’s homezone

» Game ends when all food pellets are eaten

Bot 2, Round 12

Mittwoch, 14. September 2011

The rules

Scoring:When a Bot eats a food pellet, the food is permanently removed
and one point is scored for that Bot’s team.

Timeout: Each Player only has 3 seconds to return a valid move. If it
doesn’t,a random move is executed. (All later return values are discarded.)
Five timeouts and you’re out!

Eating a Bot:When a Bot is eaten by an opposing destroyer, it returns to
its starting position (as a harvester). Five points are awarded for eating an
opponent.

Winning: A game ends when either one team eats all of the opponents’
food pellets, or the team with more points after 300 rounds.

Observations: Bots can only observe an opponent’s exact position, if they
or their teammate are within 5 squares (maze distance). If they are further
away, the opponent’s positions are noised.

Mittwoch, 14. September 2011

Getting ready

» Clone the central repository with the game files:
git clone git://github.com/Debilski/pelita.git

» Run a simple demo game:
~/pelita/pelitagame

» For help:
~/pelita/pelitagame --help

» See the Pelita documentation:
http://debilski.github.com/pelita

> Write your own player

Mittwoch, 14. September 2011

http://debilski.github.com/pelita
http://debilski.github.com/pelita

Implementing the first players

Standard imports| 1 import random
2
— 3 from pelita.datamodel import north, east, south, west, stop
Pelita Imports 4 from pelita.player import AbstractPlayer
5
6 UnidirectionalPlayer(AbstractPlayer):
Implement a 7 def get_move(self):
5imp|e player 8 return west
9
10 DrunkPlayer(AbstractPlayer):
Use the player 11 def get_move(self):
AP 12 all_directions = self.legal_moves
13 random_direction = random.choice(all_directions)
14 return random_direction
15

Invalid return values of get_move result in an automatic random move.

Mittwoch, 14. September 2011

The tournament — preliminary rounds

> On the last day, we’'ll have a tournament in two parts

» Preliminary rounds: all-against-all

Y

Mittwoch, 14. September 2011

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=preliminary&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=preliminary&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=round&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=round&trestr=0x8001

The tournament — finals

» Final rounds for the four best teams

» Last-chance final against the fifth best team

O

|

0,

Mittwoch, 14. September 2011

Writing Players 101 — the factory

» For the tournament, you’ll need a specific project structure
» Clone your group’s repository:
git clone <name>@python.g-node,de:/git/groupX

» Make it a module by adding an init file with a special method factory
groupX/__init__.py

from pelita.players import SimpleTeam, AbstractPlayer

class MyPlayer(AbstractPlayer):
def get_move(self):
return (-1, @)

def factory:
return SimpleTeam("The Winners", MyPlayer(), MyPlayer())

» More information and an example package in the wiki

Mittwoch, 14. September 2011

Writing Players 101 — Player

» In your get_move method, information about the current universe and food
situation is available. See the documentation for more details.

» self.current_pos
Where am [I?
> self. me
Which bot am | controlling?
» self. enemy_bots
Who and where are the other bots!?
» self. enemy_food
Which are the positions of the food pellets?
» self. current_uni
Retrieve the universe you live in.
» self. current_uni.maze
How does my world look like?
> self. legal_moves
Where can | go?

Mittwoch, 14. September 2011

Writing Players 101 — Testing Players

» Very useful

The alternative is to run games, hope that the Players end up in the right
situation, guess from looking at the screen if it behaved correctly

» More sophisticated testing scenario

Write a test layout and check that your Player behaves correctly, e.g. for the
Player always moving west:

Create a file and run the script with it.

See documentation for more information

HH AR
#0 . 1#

#H
#2 . # 3#
HAHH AR AR

Mittwoch, 14. September 2011

Basic Player behaviors — Finite State Machines

Start

Think about the state pattern

arrived in
opponent’s
half
Going to e .
opponent Looking for
half food
opponent
arrived in far away
your half
opponent
very close

Fleeing

Mittwoch, 14. September 2011

Basic Player behaviors — Value-maximizer

» Player has a function that gives a value to a given game state according to
several criteria, e.g.

value(game_state) = —1 X distance_from_nearest_food + 100 X score
» At each turn:
get the legal actions Player.legal _moves

request the future universe, given one of the actions
self.current_uni.copy().move_bot(self._index, direction)

compute the value of future states

pick the action that leads to the state with the highest value

Mittwoch, 14. September 2011

Learning

» Plenty of opportunities for learning
Adapt parameters according to final score

Reinforcement Learning (similar to learning weights in the value-maximizing
Player)

Collect statistics on opponents

Ambitious: Genetic Programming

Mittwoch, 14. September 2011

Things that we’ve found to be useful

» Shortest-path algorithm
» Algorithm to keep track of opponents

» Communication between Players (requires investigating the SimpleTeam
initialisation in the factory method)

» Code re-use is encouraged

» More important than fancy strategies is the quality of your code: Is it well
tested? Does it conform to standards? Apply agile development techniques

Mittwoch, 14. September 2011

Let’s start!

» Form 5 teams of 6 people (wiki)
» Test that you can write and run matches with simple players
set up your project directory:
clone the game files

clone your group repository

copy a random Player and corresponding Player’s factory, try to have a few
matches with different layouts

write a Player that picks a random direction at junctions
» Organize team work

» Have fun!

Mittwoch, 14. September 2011

