
Writing Concurrent Applications in Python

Bastian Venthur

Berlin Institute of Technology

2011-09-14

Outline
Introduction to Concurrency

Starting and Joining Tasks
Processes and Threads
Concurrency Paradigms

Python’s threading Module
Thread Class
Race Conditions
Locks
Starvation and Deadlocks
Conditions
Events
Other Stuff not Covered here

Python’s Multiprocessing Module
Process
Inter Process Communication
Queues
Pipes

What is Concurrency?

I Parallel Computing
I Several computations executing simultaneously
I ... potentially interacting with each other

Why Concurrency?

1970-2005
I CPUs became quicker and quicker every year
I Moore’s Law: The number of transistors [...] doubles

approximately every two years.

But!
I Physical limits: Miniaturization at atomic levels, energy

consumption, heat produced by CPUs, etc.
I Stagnation in CPU clock rates since 2005

Since 2005
Chip producers aimed for more cores instead of higher clock
rates.

Why Concurrency?

1970-2005
I CPUs became quicker and quicker every year
I Moore’s Law: The number of transistors [...] doubles

approximately every two years.

But!
I Physical limits: Miniaturization at atomic levels, energy

consumption, heat produced by CPUs, etc.
I Stagnation in CPU clock rates since 2005

Since 2005
Chip producers aimed for more cores instead of higher clock
rates.

Useful Applications for Concurrency
Ray Tracing

Trace the path from an imaginary eye (camera) through each
pixel in a screen and calculate the color of the object(s) visible
through it.

Useful Applications for Concurrency
Ray Tracing

Serial Execution: 1h

Figure: Ray Tracing performed by
one task.

Parallel Execution: 0.5h

Figure: Ray Tracing performed by
two tasks.

Ray Tracing is embarrassingly parallel:
I Little or no effort to separate the problem into parallel tasks
I No dependencies or communication between the tasks

Useful Applications for Concurrency
Ray Tracing

Serial Execution: 1h

Figure: Ray Tracing performed by
one task.

Parallel Execution: 0.5h

Figure: Ray Tracing performed by
two tasks.

Ray Tracing is embarrassingly parallel:
I Little or no effort to separate the problem into parallel tasks
I No dependencies or communication between the tasks

Useful Applications for Concurrency
Ray Tracing

Serial Execution: 1h

Figure: Ray Tracing performed by
one task.

Parallel Execution: 0.5h

Figure: Ray Tracing performed by
two tasks.

Ray Tracing is embarrassingly parallel:
I Little or no effort to separate the problem into parallel tasks
I No dependencies or communication between the tasks

Another Example
Some random calculation

L1: a = 2
L2: b = 3

L3: p = a + b
L4: q = a * b

L5: r = q - p

I L1||L2, L3||L4, L5
I L3 and L4 have to wait for L1 and L2
I L5 has to wait for L3 and L4

Some synchronization or communication between the tasks is
required to solve this calculation correctly. (More on that later)

Another Example
Some random calculation

L1: a = 2
L2: b = 3

L3: p = a + b
L4: q = a * b

L5: r = q - p

I L1||L2, L3||L4, L5
I L3 and L4 have to wait for L1 and L2
I L5 has to wait for L3 and L4

Some synchronization or communication between the tasks is
required to solve this calculation correctly. (More on that later)

Another Example
Some random calculation

L1: a = 2
L2: b = 3

L3: p = a + b
L4: q = a * b

L5: r = q - p

I L1||L2, L3||L4, L5
I L3 and L4 have to wait for L1 and L2
I L5 has to wait for L3 and L4

Some synchronization or communication between the tasks is
required to solve this calculation correctly. (More on that later)

Getting Started
Starting and Joining a Task

A task is a program or method that runs concurrently.

s ta r t task t
t w i l l run concurrently and the
(i . e . ∗ th is ∗) program w i l l continue
t = Task ()
t . s t a r t ()
. . .
wait for t to f in ish
t . j o i n ()

Main Task t

t.start()

t.join()

Join synchronises the parent task with the child task by waiting
for the child task to terminate.

Two Kinds of Tasks: Threads and Processes

Process 1

Thread 1

Thread Local
Memory

Code

Stack

...

Memory

Process 2

Memory

Thread 1

Thread
Local

Memory

Code

Stack

...

Thread 2

Thread
Local

Memory

Code

Stack

...

Thread 3

Thread
Local

Memory

Code

Stack

...

I A process has one or more threads
I Processes have their own memory (Variables, etc.)
I Threads share the memory of the process they belong to
I Threads are also called lightweight processes:

I They spawn faster than processes
I Context switches (if necessary) are faster

Communication between Tasks
Shared Memory and Message Passing

Basically you have two paradigms:
1. Shared Memory

I Taks A and B share some memory
I Whenever a task modifies a variable in the shared memory,

the other task(s) see that change immediately
2. Message Passing

I Task A sends a message to Task B
I Task B receives the message and does something with it

The former paradigm is usually used with threads and the latter
one with processes (more on that later).

Outline
Introduction to Concurrency

Starting and Joining Tasks
Processes and Threads
Concurrency Paradigms

Python’s threading Module
Thread Class
Race Conditions
Locks
Starvation and Deadlocks
Conditions
Events
Other Stuff not Covered here

Python’s Multiprocessing Module
Process
Inter Process Communication
Queues
Pipes

Threads
They share memory!

l = [0, 1, 2]

l.append(3)

Thread 1 Thread 2

print l
[0, 1, 2]

print l
[0, 1, 2, 3]

Ti
m

e

Modifying a variable from the processes memory space in one
thread immediately affects the corresponding value in the other
thread as both variables point to the same address in the
process’ memory space.

Threads
But they don’t share everything.

I Threads have also thread-local memory
I Every variable in this scope is only visible within that thread
I In Python every variable in a thread is thread-local by

default.
I Access to a process variable is explicit (e.g. by passing it

as an argument to the thread or via global)

Python’s Thread Class

I Subclass Thread class and override run method
or Pass callable object to the constructor
I Start thread by calling its start method
I Wait for thread to terminate by calling the join method

Python’s Thread Class
Usage

Subclassing Thread
from th read ing import Thread

Subclass Thread
class MyThread (Thread) :

def run (s e l f) :
pr in t s e l f . name, ” Hello World ! ”

i f name == ’ main ’ :
threads = []
I n i t i a l i z e the threads
for i in range (1 0) :

threads . append (MyThread ())
Star t the threads
for thread in threads :

thread . s t a r t ()
Wait for threads to terminate
for thread in threads :

thread . j o i n ()

Passing callable to the constructor
from th read ing import Thread , cu r r en t t h r ea d

def run () :
pr in t c u r re n t t h r ea d () . name, ” Hello World ! ”

i f name == ’ main ’ :
threads = []
I n i t i a l i z e the threads
for i in range (1 0) :

Pass ca l lab le object to the constructor
threads . append (Thread (t a r g e t =run , args = ()))

Star t the threads
for thread in threads :

thread . s t a r t ()
Wait for threads to terminate
for thread in threads :

thread . j o i n ()

Python’s Thread Class
Usage

Subclassing Thread
from th read ing import Thread

Subclass Thread
class MyThread (Thread) :

def run (s e l f) :
pr in t s e l f . name, ” Hello World ! ”

i f name == ’ main ’ :
threads = []
I n i t i a l i z e the threads
for i in range (1 0) :

threads . append (MyThread ())
Star t the threads
for thread in threads :

thread . s t a r t ()
Wait for threads to terminate
for thread in threads :

thread . j o i n ()

Passing callable to the constructor
from th read ing import Thread , cu r r en t t h r ea d

def run () :
pr in t c u r re n t t h r ea d () . name, ” Hello World ! ”

i f name == ’ main ’ :
threads = []
I n i t i a l i z e the threads
for i in range (1 0) :

Pass ca l lab le object to the constructor
threads . append (Thread (t a r g e t =run , args = ()))

Star t the threads
for thread in threads :

thread . s t a r t ()
Wait for threads to terminate
for thread in threads :

thread . j o i n ()

Output...

The above script produces the following output:
$ python s imple thread . py
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−3 Hel lo World !
Thread−4 Hel lo World !
Thread−5 Hel lo World !
Thread−6 Hel lo World !
Thread−7 Hel lo World !
Thread−8 Hel lo World !
Thread−9 Hel lo World !
Thread−10 Hel lo World !

... and this one:
$ python s imple thread . py
Thread−1 Hel lo World !
Thread−3 Hel lo World ! # <− Sweet !
Thread−2 Hel lo World !
Thread−4 Hel lo World !
Thread−5 Hel lo World !
Thread−6 Hel lo World !
Thread−7 Hel lo World !
Thread−8 Hel lo World !
Thread−9 Hel lo World !
Thread−10 Hel lo World !

Output...

The above script produces the following output:
$ python s imple thread . py
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−3 Hel lo World !
Thread−4 Hel lo World !
Thread−5 Hel lo World !
Thread−6 Hel lo World !
Thread−7 Hel lo World !
Thread−8 Hel lo World !
Thread−9 Hel lo World !
Thread−10 Hel lo World !

... and this one:
$ python s imple thread . py
Thread−1 Hel lo World !
Thread−3 Hel lo World ! # <− Sweet !
Thread−2 Hel lo World !
Thread−4 Hel lo World !
Thread−5 Hel lo World !
Thread−6 Hel lo World !
Thread−7 Hel lo World !
Thread−8 Hel lo World !
Thread−9 Hel lo World !
Thread−10 Hel lo World !

Example
import u r l l i b 2 , t ime , threading , sys , i t e r t o o l s

HOSTS = [’ http : / / google .com ’ , ’ http : / / yahoo .com ’ , ’ http : / / amazon .com ’ ,
’ http : / / apple .com ’ , ’ http : / / reuters .com ’ , ’ http : / / ibm .com ’]

class MyThread (th read ing . Thread) :

def i n i t (s e l f , hosts) :
th is l ine is important !
th read ing . Thread . i n i t (s e l f)
s e l f . hosts = hosts

def run (s e l f) :
for i in i t e r t o o l s . count () :

t ry :
host = s e l f . hosts . pop ()

except IndexEr ror :
break

u r l = u r l l i b 2 . ur lopen (host)
u r l . read (1024)

pr in t s e l f . name, ”processed %i URLs. ” % i

i f name == ’ main ’ :
t1 = t ime . t ime ()
threads = [MyThread (HOSTS) for i in range (i n t (sys . argv [1]))]
for thread in threads :

thread . s t a r t ()
for thread in threads :

thread . j o i n ()
pr in t ’ Elapsed time : %.2fs ’ % (t ime . t ime () − t1)

Output...
$ python u r l f e t ch t h r e ad ed . py 1
Thread−1 processed 6 URLs .
Elapsed t ime : 4.19 s

$ python u r l f e t ch t h r e ad ed . py 3
Thread−1 processed 1 URLs .
Thread−2 processed 2 URLs .
Thread−3 processed 3 URLs .
Elapsed t ime : 1.61 s

$ python u r l f e t ch t h r e ad ed . py 6
Thread−6 processed 1 URLs .
Thread−3 processed 1 URLs .
Thread−2 processed 1 URLs .
Thread−4 processed 1 URLs .
Thread−5 processed 1 URLs .
Thread−1 processed 1 URLs .
Elapsed t ime : 1.79 s

$ python u r l f e t ch t h r e ad ed . py 12
Thread−7 processed 0 URLs .
Thread−8 processed 0 URLs .
Thread−9 processed 0 URLs .
Thread−10 processed 0 URLs .
Thread−11 processed 0 URLs .
Thread−12 processed 0 URLs .
Thread−6 processed 1 URLs .
Thread−3 processed 1 URLs .
Thread−2 processed 1 URLs .
Thread−4 processed 1 URLs .
Thread−5 processed 1 URLs .
Thread−1 processed 1 URLs .
Elapsed t ime : 1.27 s

Race Conditions

I Concurrent tasks are cool and now you have the tools to
unleash the full power of your multicore
system/cluster/supercomputer, but...

I There is one major drawback: you have absolutely no
guarantees about the timing when specific parts of your
tasks are executed.

I (And there is also the GIL – but more on that later)

Meet the Race Conditions!

Race Conditions
Example

I Your company transfers 2.000 EUR to your account
I Later Ebay charges your account with 1.000 EUR

Time Thread 1 (your company) Balance Thread 2 (ebay)
1 Read Value (10.000) 10.000
2 Increment Value (12.000) 10.000
3 Write Value 12.000
4 12.000 Read Value (12.000)
5 12.000 Decrement Value (11.000)
6 11.000 Write Value

Race Conditions
Same Example - Now a Bit Quicker

Time Thread 1 (your company) Balance Thread 2 (ebay)
1 Read Value (10.000) 10.000
2 Increment Value (12.000) 10.000
3 10.000 Read Value (10.000)
4 Write Value 12.000
5 12.000 Decrement Value (9.000)
6 9.000 Write Value

Race Condition:
I T2 reads the old Value before T1 has written the result
I T2 overwrites the result of T1

Reading, manipulating, and writing Value is a critical section

Critical Section

Piece of code that access a shared resource that must not be
concurrently accessed by more than one task.

...
Read Ressource
Manipulate Ressource
Write Ressource
...

Critical Section

Locks
I Simplest synchronisation primitive
I Two methods: acquire() and release()
I Once acquired, no other task can acquire the same lock

until it is released
I At any time, at most one task can hold a lock

lock.acquire()
#
critical section
#
lock.release()

lock.acquire()

#
critical section
#
lock.release()

blocked until
lock is released

Task 1 Task 2

Warning: Locks may cause Starvation and Deadlocks!

Locks
I Simplest synchronisation primitive
I Two methods: acquire() and release()
I Once acquired, no other task can acquire the same lock

until it is released
I At any time, at most one task can hold a lock

lock.acquire()
#
critical section
#
lock.release()

lock.acquire()

#
critical section
#
lock.release()

blocked until
lock is released

Task 1 Task 2

Warning: Locks may cause Starvation and Deadlocks!

Starvation

I A task is constantly denied necessary resources
I The task can never finish (starves)

lock.acquire()
...
never releases lock

lock.acquire()
blocked until
lock is released

Task 1 Task 2

:(

Deadlock

Figure: Classic deadlock situation
as seen in nature.

Task 1

Task 2

Lock 1 Lock 2

Waiting for

Waiting for

Holding

Holding

Figure: Classic deadlock situation
as seen in Computer Science.

Usually a deadlock occurs when two or more tasks wait
cyclically for each other.

One Solution: If a task holds a lock and cannot acquire a
second one, release the first one and try again.

Deadlock

Figure: Classic deadlock situation
as seen in nature.

Task 1

Task 2

Lock 1 Lock 2

Waiting for

Waiting for

Holding

Holding

Figure: Classic deadlock situation
as seen in Computer Science.

Usually a deadlock occurs when two or more tasks wait
cyclically for each other.

One Solution: If a task holds a lock and cannot acquire a
second one, release the first one and try again.

Locks in Python

I The lowest synchronisation primitive in Python
I Two methods: Lock.acquire(blocking=True) and
Lock.release()

I A thread calls acquire() before entering a critical section
and release() after leaving

I Other threads that call acquire() while the Lock is
already acquired will wait until it is released (blocking)

I Calling acquire(False) makes it non-blocking; the
method will return immediately False instead of waiting

Locks in Python

Usage:
from th read ing import Lock

. . .

l ock = th read ing . Lock ()
lock . acqu i re ()
c r i t i c a l section
. . .
c r i t i c a l section
l ock . re lease ()

Better, using context manager:
l ock = th read ing . Lock ()
with l ock :

c r i t i c a l section
. . .
c r i t i c a l section

Locks in Python

Usage:
from th read ing import Lock

. . .

l ock = th read ing . Lock ()
lock . acqu i re ()
c r i t i c a l section
. . .
c r i t i c a l section
l ock . re lease ()

Better, using context manager:
l ock = th read ing . Lock ()
with l ock :

c r i t i c a l section
. . .
c r i t i c a l section

Example
Two threads using the same resource w/o locking

from th read ing import Thread
import sys
import t ime

class MyThread (Thread) :

def run (s e l f) :
for i in range (2 0) :

we simulate a very long wri te access
sys . s tdou t . w r i t e (s e l f . name)
t ime . sleep (0 . 1)
sys . s tdou t . w r i t e (’ Hello World!\n ’)
sys . s tdou t . f l u s h ()
t ime . sleep (0 . 1)

i f name == ’ main ’ :
threads = []
for i in range (2) :

threads . append (MyThread ())
for thread in threads :

thread . s t a r t ()
for thread in threads :

thread . j o i n ()

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−2Thread−1 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

. . .
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !

Example
Two threads using the same resource w/o locking

from th read ing import Thread
import sys
import t ime

class MyThread (Thread) :

def run (s e l f) :
for i in range (2 0) :

we simulate a very long wri te access
sys . s tdou t . w r i t e (s e l f . name)
t ime . sleep (0 . 1)
sys . s tdou t . w r i t e (’ Hello World!\n ’)
sys . s tdou t . f l u s h ()
t ime . sleep (0 . 1)

i f name == ’ main ’ :
threads = []
for i in range (2) :

threads . append (MyThread ())
for thread in threads :

thread . s t a r t ()
for thread in threads :

thread . j o i n ()

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−2Thread−1 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

Thread−1Thread−2 Hel lo World !
He l lo World !

. . .
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !
Thread−2Thread−1 Hel lo World !

He l lo World !

Example
Two threads using the same resource w/ locking

from th read ing import Thread , Lock
import sys
import t ime

class MyThread (Thread) :

def i n i t (s e l f , l ock) :
Thread . i n i t (s e l f)
s e l f . l ock = lock

def run (s e l f) :
for i in range (2 0) :

with s e l f . l ock :
we simulate a very long wri te access
sys . s tdou t . w r i t e (s e l f . name)
t ime . sleep (0 . 1)
sys . s tdou t . w r i t e (’ Hello World!\n ’)
sys . s tdou t . f l u s h ()

t ime . sleep (0 . 1)

i f name == ’ main ’ :
l ock = Lock ()
threads = []
for i in range (2) :

threads . append (MyThread (lock))
for thread in threads :

thread . s t a r t ()
for thread in threads :

thread . j o i n ()

Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
. . .
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !

Example
Two threads using the same resource w/ locking

from th read ing import Thread , Lock
import sys
import t ime

class MyThread (Thread) :

def i n i t (s e l f , l ock) :
Thread . i n i t (s e l f)
s e l f . l ock = lock

def run (s e l f) :
for i in range (2 0) :

with s e l f . l ock :
we simulate a very long wri te access
sys . s tdou t . w r i t e (s e l f . name)
t ime . sleep (0 . 1)
sys . s tdou t . w r i t e (’ Hello World!\n ’)
sys . s tdou t . f l u s h ()

t ime . sleep (0 . 1)

i f name == ’ main ’ :
l ock = Lock ()
threads = []
for i in range (2) :

threads . append (MyThread (lock))
for thread in threads :

thread . s t a r t ()
for thread in threads :

thread . j o i n ()

Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
. . .
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !
Thread−1 Hel lo World !
Thread−2 Hel lo World !

Conditions
Motivation

I If a precondition for an operation is not fulfilled, wait until
notified

I Waiting temporarily releases the lock and blocks until
notified

Example:
Consumer thread
c o nd i t i on . acqu i re ()
while not i t e m a v a i l a b l e () :

c o nd i t i on . wa i t () # temporarily release the lock and sleep
g e t a n a v a i l a b l e i t e m ()
c o nd i t i on . re lease ()

Producer thread
c o nd i t i on . acqu i re ()
make an i tem ava i lab le ()
c o nd i t i on . n o t i f y () # wake up a thread waiting
c o nd i t i on . re lease ()

Conditions can be implemented using several locks!

Conditions in Python

I Like locks, conditions have acquire(blocking=True)
and release() methods

I Additionally conditions have wait(timeout=None),
notify(), and notify_all() methods

I wait(timeout=None) temporarily releases the lock and
blocks until notified and the lock is free

I The lock is automatically re-acquired after wait

Example
One Producer/Many Consumers

from th read ing import Condi t ion , Thread , cu r r en t t h r ea d
import t ime

def consumer (cond , queue) :
name = cu r r en t t h r ea d () . name # equivalent to ” se l f .name” when subclassing Thread
pr in t name, ’ acquiring lock . ’
with cond :

pr in t name, ’ acquired lock . ’
while l en (queue) == 0:

pr in t name, ’ waiting (released lock) . ’
cond . wa i t ()

pr in t name, ’consumed ’ , queue . pop ()
pr in t name, ’ releasing lock . ’

def producer (cond , queue) :
for i in range (5) :

pr in t ’ Producer : acquiring lock . ’
with cond :

pr in t ’ Producer : acquired lock , producing one item . ’
queue . append (i)
pr in t ’ Producer : not i fy ing . ’
cond . n o t i f y ()
pr in t ’ Producer : releasing lock . ’

t ime . sleep (1)

i f name == ’ main ’ :
queue = []
cond = Condi t ion ()
consumers = [Thread (t a r g e t =consumer , args =(cond , queue)) for i in range (5)]
producer = Thread (t a r g e t =producer , args =(cond , queue))
producer . s t a r t ()
for consumer in consumers :

consumer . s t a r t ()

Output
One Producer/Many Consumers

Producer : acqu i r i ng lock .
Thread−2 acqu i r i ng lock .
Thread−1 acqu i r i ng lock . # Producer , T1 and T2 t r i ed to acquire the lock
Thread−2 acquired lock . # T2 holds the lock
Thread−2 wa i t i ng (re leased lock) . # Nothing in the queue yet , release lock
Thread−1 acquired lock .
Thread−1 wa i t i ng (re leased lock) . # Same here with T1
Thread−3 acqu i r i ng lock .
Thread−4 acqu i r i ng lock .
Thread−5 acqu i r i ng lock .
Producer : acqui red lock , producing one i tem . # Fina l ly !
Producer : n o t i f y i n g .
Producer : re l eas ing lock .
Thread−3 acquired lock .
Thread−3 consumed 0 # F i rs t item consumed!
Thread−3 re leas ing lock .
Thread−4 acquired lock .
Thread−4 wa i t i ng (re leased lock) .
Thread−5 acquired lock .
Thread−5 wa i t i ng (re leased lock) .
Thread−2 wa i t i ng (re leased lock) .
Producer : acqu i r i ng lock .
Producer : acqui red lock , producing one i tem . # Second item produced
Producer : n o t i f y i n g .
Producer : re l eas ing lock .
Thread−1 consumed 1
Thread−1 re leas ing lock .
. . .

Events
Motivation

I Several Tasks wait for a specific event
I A task can set the event, waking up all Tasks waiting for

that event
I A task can clear the event so other task will block again

when waiting for that event

Usage:
event = th read ing . Event ()

thread 1 . . n wait for an event
event . wa i t ()

thread x sets or resets the event
event . se t ()
event . c l ea r ()

Events can be implemented using Conditions (which can be
implemented using locks!)

Stuff not covered here
... but which is still useful

RLock A reentrant lock may be acquired several times by
the same thread

Semaphore Like a lock but with a counter
Timer Action that should be run after a certain amount of

time has passed
Queue The Queue module provides a synchronized

queue class (FIFO, LIFO and Priority)

Outline
Introduction to Concurrency

Starting and Joining Tasks
Processes and Threads
Concurrency Paradigms

Python’s threading Module
Thread Class
Race Conditions
Locks
Starvation and Deadlocks
Conditions
Events
Other Stuff not Covered here

Python’s Multiprocessing Module
Process
Inter Process Communication
Queues
Pipes

The multiprocessing Module

I Follows closely the threading API
I Process class has almost the same methods as Thread

(run, start, join, etc.)
I Contains equivalents of all synchronization primitives from
threading (Lock, Event, Condition, etc.)

But!
I Processes are not threads!
I Processes do not share memory (i.e. variables)!

I Synchronization primitives are less important when working
with processes

I Inter Process Communication (IPC) is used for
communication

The multiprocessing Module

I Follows closely the threading API
I Process class has almost the same methods as Thread

(run, start, join, etc.)
I Contains equivalents of all synchronization primitives from
threading (Lock, Event, Condition, etc.)

But!
I Processes are not threads!
I Processes do not share memory (i.e. variables)!

I Synchronization primitives are less important when working
with processes

I Inter Process Communication (IPC) is used for
communication

Example
Processes do not share memory!

Similar example like the threaded URL-fetcher:
from mul t i p rocess ing import Process , cu r ren t p rocess
import i t e r t o o l s

ITEMS = [1 , 2 , 3 , 4 , 5 , 6]

def worker (i tems) :
for i in i t e r t o o l s . count () :

t ry :
i tems . pop ()

except IndexEr ror :
break

pr in t cur ren t p rocess () . name, ’ processed %i items . ’ % i

i f name == ’ main ’ :
workers = [Process (t a r g e t =worker , args =(ITEMS ,)) for i in range (3)]
for worker in workers :

worker . s t a r t ()
for worker in workers :

worker . j o i n ()
pr in t ’ ITEMS af te r a l l workers f inished : ’ , ITEMS

Output:
Process−1 processed 6 i tems .
Process−2 processed 6 i tems .
Process−3 processed 6 i tems .
ITEMS a f t e r a l l workers f i n i s h e d : [1 , 2 , 3 , 4 , 5 , 6]

Example
Processes do not share memory!

Similar example like the threaded URL-fetcher:
from mul t i p rocess ing import Process , cu r ren t p rocess
import i t e r t o o l s

ITEMS = [1 , 2 , 3 , 4 , 5 , 6]

def worker (i tems) :
for i in i t e r t o o l s . count () :

t ry :
i tems . pop ()

except IndexEr ror :
break

pr in t cur ren t p rocess () . name, ’ processed %i items . ’ % i

i f name == ’ main ’ :
workers = [Process (t a r g e t =worker , args =(ITEMS ,)) for i in range (3)]
for worker in workers :

worker . s t a r t ()
for worker in workers :

worker . j o i n ()
pr in t ’ ITEMS af te r a l l workers f inished : ’ , ITEMS

Output:
Process−1 processed 6 i tems .
Process−2 processed 6 i tems .
Process−3 processed 6 i tems .
ITEMS a f t e r a l l workers f i n i s h e d : [1 , 2 , 3 , 4 , 5 , 6]

Inter Process Communication (IPC)
Pipes and Queues

Pipe

I For communication between two processes
I A Pipe has two ends: process A writes something into his

end of the pipe and process B can read it from his
I Pipes are bidirectional

Queue

I Multi-producer, multi-consumer FIFO
I Multiple processes can put items into the Queue, others

can get them

Solution
Use multiprocessing.Queue

from mul t i p rocess ing import Process , cur ren t process , Queue
import i t e r t o o l s

ITEMS = Queue ()
for i in [1 , 2 , 3 , 4 , 5 , 6 , ’end ’ , ’end ’ , ’end ’] :

ITEMS . put (i)

def worker (i tems) :
for i in i t e r t o o l s . count () :

i tem = items . get ()
i f i tem == ’end ’ :

break
pr in t cur ren t p rocess () . name, ’ processed %i items . ’ % i

i f name == ’ main ’ :
workers = [Process (t a r g e t =worker , args =(ITEMS ,)) for i in range (3)]
for worker in workers :

worker . s t a r t ()
for worker in workers :

worker . j o i n ()
pr in t ’#ITEMS af te r a l l workers f inished : ’ , ITEMS . qs ize ()

Output:
Process−1 processed 1 i tems .
Process−2 processed 5 i tems .
Process−3 processed 0 i tems .
#ITEMS af te r a l l workers f inished : 0

Solution
Use multiprocessing.Queue

from mul t i p rocess ing import Process , cur ren t process , Queue
import i t e r t o o l s

ITEMS = Queue ()
for i in [1 , 2 , 3 , 4 , 5 , 6 , ’end ’ , ’end ’ , ’end ’] :

ITEMS . put (i)

def worker (i tems) :
for i in i t e r t o o l s . count () :

i tem = items . get ()
i f i tem == ’end ’ :

break
pr in t cur ren t p rocess () . name, ’ processed %i items . ’ % i

i f name == ’ main ’ :
workers = [Process (t a r g e t =worker , args =(ITEMS ,)) for i in range (3)]
for worker in workers :

worker . s t a r t ()
for worker in workers :

worker . j o i n ()
pr in t ’#ITEMS af te r a l l workers f inished : ’ , ITEMS . qs ize ()

Output:
Process−1 processed 1 i tems .
Process−2 processed 5 i tems .
Process−3 processed 0 i tems .
#ITEMS af te r a l l workers f inished : 0

Pipes

I A pipe has two ends: a, b = Pipe()

I A process sends something into one end and the other
process can recv it on the other

I recv will block if the pipe is empty

Fun Fact
Queues are implemented using Pipes and locks.

Example

from mul t i p rocess ing import Process , Pipe

def worker (conn) :
while True :

i tem = conn . recv ()
i f i tem == ’end ’ :

break
pr in t i tem

def master (conn) :
conn . send (’ Is ’)
conn . send (’ th is ’)
conn . send (’on? ’)
conn . send (’end ’)

i f name == ’ main ’ :
a , b = Pipe ()
w = Process (t a r g e t =worker , args =(a ,))
m = Process (t a r g e t =master , args =(b ,))
w. s t a r t ()
m. s t a r t ()
w. j o i n ()
m. j o i n ()

Output:
I s
t h i s
on?

Example

from mul t i p rocess ing import Process , Pipe

def worker (conn) :
while True :

i tem = conn . recv ()
i f i tem == ’end ’ :

break
pr in t i tem

def master (conn) :
conn . send (’ Is ’)
conn . send (’ th is ’)
conn . send (’on? ’)
conn . send (’end ’)

i f name == ’ main ’ :
a , b = Pipe ()
w = Process (t a r g e t =worker , args =(a ,))
m = Process (t a r g e t =master , args =(b ,))
w. s t a r t ()
m. s t a r t ()
w. j o i n ()
m. j o i n ()

Output:
I s
t h i s
on?

Summary
(aka Buzzword Bingo)

Now you know about:
I Concurrent tasks
I Semantics of starting and joining tasks
I Threads and Processes
I Race conditions and critical sections
I Locks, Conditions, Events
I Starvation and Deadlocks
I Pipes and Queues

Fin

PS: In the next lecture you will learn about Python’s Global
Interpreter Lock (GIL) and how to bypass it.

	Introduction to Concurrency
	Starting and Joining Tasks
	Processes and Threads
	Concurrency Paradigms

	Python's threading Module
	Thread Class
	Race Conditions
	Locks
	Starvation and Deadlocks
	Conditions
	Events
	Other Stuff not Covered here

	Python's Multiprocessing Module
	Process
	Inter Process Communication
	Queues
	Pipes

