When Parallelization Does Not Help The Starving CPU Problem

Francesc Alted

Blosc Author Barcelona Music and Audio Technology (BMAT)

Francesc Alted When Parallelization Does Not Help

< ∃ >

Outline

2 The Data Access Issue

- Why Modern CPUs Are Starving?
- Caches And The Hierarchical Memory Model
- Techniques For Fighting Data Starvation

Computing a Polynomial

We want to compute the next polynomial:

$$y = 0.25x^3 + 0.75x^2 - 1.5x - 2$$

in the range [-1, 1], with a granularity of 10^{-7} in the x axis ...and want to do that as FAST as possible...

Computing a Polynomial

We want to compute the next polynomial:

$$y = 0.25x^3 + 0.75x^2 - 1.5x - 2$$

in the range [-1, 1], with a granularity of 10^{-7} in the x axis ...and want to do that as FAST as possible...

- The second sec

Use NumPy

NumPy is a powerful package that let you perform calculations with Python, but at C speed:

Computing $y = 0.25x^3 + 0.75x^2 - 1.5x - 2$ with NumPy
import numpy as np
N = 10*1000*1000
x = np.linspace(-1, 1, N)
y = .25*x**3 + .75*x**2 - 1.5*x - 2

That takes around 1.60 sec on our machine (Intel Xeon E5520 @ 2.3 GHz). How to make it faster?

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

'Quick & Dirty' Approach: Parallelize

- The problem of computing a polynomial is "embarrassingly" parallelizable: just divide the domain to compute in N chunks and evaluate the expression for each chunk.
- This can be easily implemented in Python by, for example, using the multiprocessing module (so as to bypass the GIL). See poly-mp.py script.
- Using 2 cores, the 1.60 sec is reduced down to 1.18 sec, which is a 1.35x improvement. Not bad.
- We are done! Or perhaps not?

Another (Much Easier) Approach: Factorize

- The NumPy expression:
 (I) y = .25*x**3 + .75*x**2 1.5*x 2 can be rewritten as:
 (II) y = ((.25*x + .75)*x - 1.5)*x - 2
 With this, the time goes from 1.60 sec to 0.30 sec
- With this, the time goes from 1.60 sec to 0.30 sec, which is much faster (4x) than using two processors with the multiprocessing approach (1.18 sec).

Advice

Give optimization a chance before parallelizing!

Another (Much Easier) Approach: Factorize

- The NumPy expression:
 (I) y = .25*x**3 + .75*x**2 1.5*x 2 can be rewritten as:
 (II) y = ((.25*x + .75)*x - 1.5)*x - 2
 With this, the time goes from 1.60 sec to 0.30 sec
- With this, the time goes from 1.60 sec to 0.30 sec, which is much faster (4x) than using two processors with the multiprocessing approach (1.18 sec).

Advice

Give optimization a chance before parallelizing!

(1日) (1日) (1日)

Numexpr Can Compute Expressions Way Faster

Numexpr is a JIT compiler, based on NumPy, that optimizes the evaluation of complex expressions. Its use is easy:

Computing $y = 0.25x^3 + 0.75x^2 - 1.5x - 2$ with Numexpr
import numexpr as ne
N = 10*1000*1000
x = np.linspace(-1, 1, N)
y = ne.evaluate('.25*x**3 + .75*x**2 - 1.5*x - 2')

That takes around 0.14 sec to complete, which is 11x faster than the original NumPy expression (1.60 sec).

Fine-tune Expressions with Numexpr

- Numexpr is also sensible to computer-friendly expressions like:
 (II) y = ((.25*x + .75)*x 1.5)*x 2
- Numexpr takes 0.11 sec for the above (0.14 sec were needed for the original expression, that's a 25% faster)

Summary and Open Questions

	1 core	2 core	Parallel Speed-up
NumPy (I)	1.60	1.11	1.5x
NumPy(II)	0.30	0.52	0.6×
Numexpr(1)	0.14	0.077	1.8x
Numexpr(11)	0.11	0.065	1.7x
C(II)	0.056	0.032	1.8x

- If all the approaches perform the same computations, all in C space, why the large differences in performance?
- Why the different approaches does not scale similarly in parallel mode?

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Outline

The Data Access Issue
 Why Modern CPUs Are Starving?
 Caches And The Hierarchical Memory Model

- Techniques For Fighting Data Starvation
- 3 High Performance Libraries

→ < Ξ →</p>

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Quote Back in 1993

"We continue to benefit from tremendous increases in the raw speed of microprocessors without proportional increases in the speed of memory. This means that 'good' performance is becoming more closely tied to good memory access patterns, and careful re-use of operands." "No one could afford a memory system fast enough to

satisfy every (memory) reference immediately, so vendors depends on caches, interleaving, and other devices to deliver reasonable memory performance."

 Kevin Dowd, after his book "High Performance Computing", O'Reilly & Associates, Inc, 1993

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Quote Back in 1996

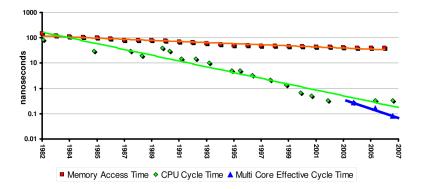
"Across the industry, today's chips are largely able to execute code faster than we can feed them with instructions and data. There are no longer performance bottlenecks in the floating-point multiplier or in having only a single integer unit. The real design action is in memory subsystems— caches, buses, bandwidth, and latency."

"Over the coming decade, memory subsystem design will be the only important design issue for microprocessors."

– Richard Sites, after his article "It's The Memory, Stupid!", Microprocessor Report, 10(10),1996

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

CPU vs Memory Cycle Trend



Francesc Alted When Parallelization Does Not Help

< A

→ < ∃ →</p>

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Book in 2009

/11/1	NORGAN & CLAYPOOL PUBLISHER
I he l	Memory System
You Car	i't Avoid It,
You Car	i't Ignore It,
You Car	i't Fake It
Bruce Jac	cob

・ロト ・四ト ・ヨト ・ヨト

2

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

The CPU Starvation Problem

Know facts (in 2011):

- Memory latency is much slower (around 250x) than processors and has been an essential bottleneck for the past fifteen years.
- Memory throughput is improving at a better rate than memory latency, but it is also much slower than processors (about 25x).

The result is that CPUs in our current computers are suffering from a serious starvation data problem: *they could consume (much!)* more data than the system can possibly deliver.

A (1) > A (1) > A

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Outline

- The Data Access Issue
 Why Modern CPUs Are Starving?
 - Caches And The Hierarchical Memory Model
 - Techniques For Fighting Data Starvation
- 3 High Performance Libraries

→ < Ξ →</p>

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

What Is the Industry Doing to Alleviate CPU Starvation?

- They are improving memory throughput: cheap to implement (more data is transmitted on each clock cycle).
- They are adding big caches in the CPU dies.

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Why Is a Cache Useful?

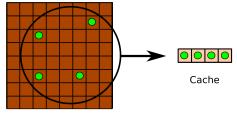
- Caches are closer to the processor (normally in the same die), so both the latency and throughput are improved.
- However: the faster they run the smaller they must be.
- They are effective mainly in a couple of scenarios:
 - Time locality: when the dataset is reused.
 - Spatial locality: when the dataset is accessed sequentially.

A (1) > A (1) > A

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Time Locality

Parts of the dataset are reused



Memory (C array)

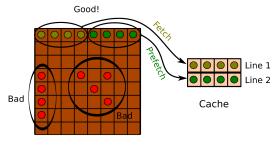
Francesc Alted When Parallelization Does Not Help

(日) (同) (日) (日)

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Spatial Locality

Dataset is accessed sequentially



Memory (C array)

Francesc Alted When Parallelization Does Not Help

A (1) > A (2) > A

-

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

The Hierarchical Memory Model

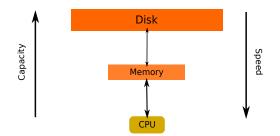
- Introduced by industry to cope with CPU data starvation problems.
- It consists in having several layers of memory with different capabilities:
 - Lower levels (i.e. closer to the CPU) have higher speed, but reduced capacity. Best suited for performing computations.
 - Higher levels have reduced speed, but higher capacity. Best suited for storage purposes.

→ < Ξ → <</p>

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

The Primordial Hierarchical Memory Model

Two level hierarchy

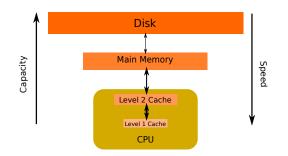


→ Ξ →

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

The Current Hierarchical Memory Model

Four level hierarchy



< A

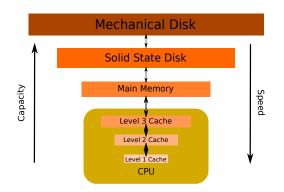
A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

The Forthcoming Hierarchical Memory Model

Six level (or more) hierarchy



→ Ξ →

Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Outline

2 The Data Access Issue

- Why Modern CPUs Are Starving?
- Caches And The Hierarchical Memory Model
- Techniques For Fighting Data Starvation

→ < ∃ →</p>

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Once Upon A Time...

- In the 1970s and 1980s many computational scientists had to learn assembly language in order to squeeze all the performance out of their processors.
- In the good old days, the processor was the key bottleneck.

→ < Ξ → </p>

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Nowadays...

- Every computer scientist must acquire a good knowledge of the hierarchical memory model (and its implications) if they want their applications to run at a decent speed (i.e. they do not want their CPUs to starve too much).
- Memory organization has become now the key factor for optimizing.

The BIG difference is. . .

...learning assembly language is relatively easy, but understanding how the hierarchical memory model works requires a considerable amount of experience (it's almost more an art than a science!)

(日) (同) (三) (三)

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Nowadays...

- Every computer scientist must acquire a good knowledge of the hierarchical memory model (and its implications) if they want their applications to run at a decent speed (i.e. they do not want their CPUs to starve too much).
- Memory organization has become now the key factor for optimizing.

The BIG difference is. . .

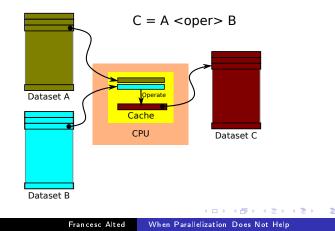
... learning assembly language is relatively easy, but understanding how the hierarchical memory model works requires a considerable amount of experience (it's almost more an art than a science!)

イロト イポト イヨト イヨト

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

The Blocking Technique

When you have to access memory, get a contiguous block that fits in the CPU cache, operate upon it or reuse it as much as possible, then write the block back to memory:



Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Understand NumPy Memory Layout

Being "a" a squared array (4000x4000) of doubles, we have:

Summing up column-wise

a[:,1].sum() # takes 9.3 ms

Summing up row-wise: more than 100x faster (!)

a[1,:].sum() # takes 72 µs

Remember:

NumPy arrays are ordered row-wise (C convention)

(日) (同) (三) (三)

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Understand NumPy Memory Layout

Being "a" a squared array (4000x4000) of doubles, we have:

Summing up column-wise

a[:,1].sum() # takes 9.3 ms

Summing up row-wise: more than 100x faster (!)

a[1,:].sum() # takes 72 µs

Remember:

NumPy arrays are ordered row-wise (C convention)

(日) (同) (三) (三)

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Vectorize Your Code

Naive matrix-matrix multiplication: 1264 s (1000x1000 doubles)

```
def dot_naive(a,b): # 1.5 MFlops
    c = np.zeros((nrows, ncols), dtype='f8')
    for row in xrange(nrows):
        for col in xrange(ncols):
            for i in xrange(nrows):
                c[row,col] += a[row,i] * b[i,col]
    return c
```

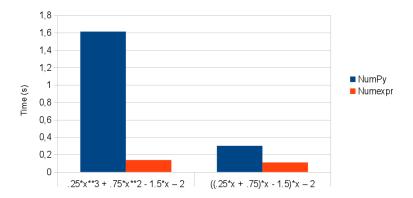
Vectorized matrix-matrix multiplication: 20 s (64x faster)

```
def dot(a,b): # 100 MFlops
   c = np.empty((nrows, ncols), dtype='f8')
   for row in xrange(nrows):
        for col in xrange(ncols):
            c[row, col] = np.sum(a[row] * b[:,col])
   return c
```

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Interlude: Resolving Some Open Questions

Time to evaluate polynomial (1 thread)

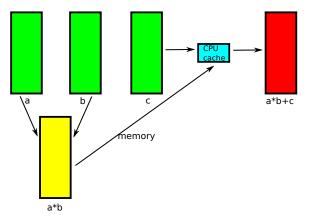


э

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

NumPy And Temporaries

Computing "a*b+c" with NumPy. Temporaries goes to memory.



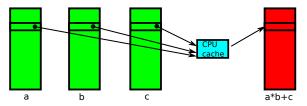
A (1) > A (1) > A

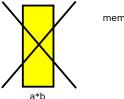
-

Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Numexpr Avoids (Big) Temporaries

Computing "a*b+c" with Numexpr. Temporaries in memory are avoided.





memory

A = A A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< A

Why Modern CPUs Are Starving? Caches And The Hierarchical Memory Model Techniques For Fighting Data Starvation

Remaining Open Questions

	1 core	2 core	Parallel Speed-up
NumPy (I)	1.60	1.11	1.5x
NumPy(II)	0.30	0.52	0.6x
Numexpr(1)	0.14	0.077	1.8x
Numexpr(11)	0.11	0.065	1.7x
C(II)	0.056	0.032	1.8x

Francesc Alted When Parallelization Does Not Help

《口》 《聞》 《臣》 《臣》

Some High Performance Libraries

- BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations (linear algebra operations).
- ATLAS (Automatically Tuned Linear Algebra Software): memory efficient algorithms as well as SIMD algorithms so as to provide an efficient BLAS.
 - MKL (Intel's Math Kernel Library): Like ATLAS, but with support for multi-core and fine-tuned for Intel architecture. The VML subset computes basic math functions (sin, cos, exp, log...) in vectors very efficiently.
- Numexpr: Performs potentially complex operations with NumPy arrays without the overhead of temporaries. Can make use of multi-cores.

BLAS/ATLAS/Intel's MKL Optimizing Memory Access

Using integrated BLAS: 5.6 s (3.5x faster than vectorized)

numpy.dot(a,b) # 350 MFlops

Using ATLAS: 0.19s (35x faster than integrated BLAS)

numpy.dot(a,b) # 10 GFlops

Using Intel's MKL: 0.11 s (70% faster than LAPACK)

numpy.dot(a,b) # 17 GFlops (2x12=24 GFlops peak)

イロト イポト イヨト イヨト

Numexpr: Dealing with Complex Expressions

Numexpr is a specialized virtual machine for evaluating expressions. It accelerates computations by using blocking and by avoiding temporaries.

For example, if "a" and "b" are vectors with 1 million entries each:

Using plain NumPy

a**2 + b**2 + 2*a*b # takes 21.5 ms

Using Numexpr (one thread): more than 2x faster!

numexpr.evaluate('a**2 + b**2 + 2*a*b') # 10.2 ms

・ 同 ト ・ 三 ト ・ 三

Numexpr: Multithreading Support

Numexpr can use multiple threads easily:

```
numexpr.set_num_threads(8) # use 8 threads
numexpr.evaluate('a**2 + b**2 + 2*a*b')
# 3.18 ms, 7x faster than NumPy
```

numexpr.set_num_threads(16) # use 16 threads numexpr.evaluate('a**2 + b**2 + 2*a*b')

1.98 ms, 11x faster than NumPy

lmportant

Numexpr also has support for Intel's VML (Vector Math Library), so you can accelerate the evaluation of transcendental (sin, cos, atanh, sqrt...) functions too.

1 TH P 1 - P 1 - P

Numexpr: Multithreading Support

Numexpr can use multiple threads easily:

```
numexpr.set_num_threads(8) # use 8 threads
numexpr.evaluate('a**2 + b**2 + 2*a*b')
# 3.18 ms, 7x faster than NumPy
```

```
numexpr.set_num_threads(16) # use 16 threads
numexpr.evaluate('a**2 + b**2 + 2*a*b')
# 1.98 ms, 11x faster than NumPy
```

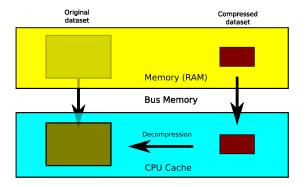
Important

Numexpr also has support for Intel's VML (Vector Math Library), so you can accelerate the evaluation of transcendental (sin, cos, atanh, sqrt...) functions too.

Introducing Blosc A Blocked, Shuffling and Loss-Less Compression Library

- Blosc is a new, loss-less compressor for binary data. It's optimized for speed, not for high compression ratios.
- It is based on the FastLZ compressor, but with some additional tweaking:
 - It works by splitting the input dataset into blocks that fit well into the level 1 cache of modern processors.
 - It can shuffle bytes very efficiently for improved compression ratios (using the data type size meta-information).
 - Makes use of SSE2 vector instructions (if available).
 - Multi-threaded (via pthreads).
- Free software (MIT license).

Reading Compressed Datasets

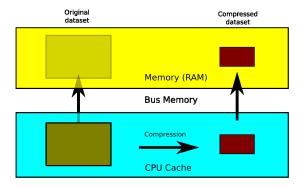


Transmission + decompression processes faster than direct transfer?

Francesc Alted When Parallelization Does Not Help

→ < ∃ →</p>

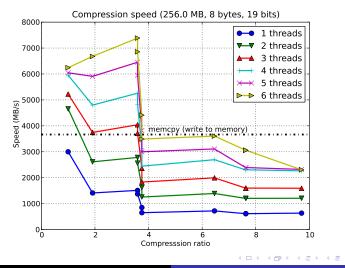
Writing Compressed Datasets



Compression + transmission processes faster than direct transfer?

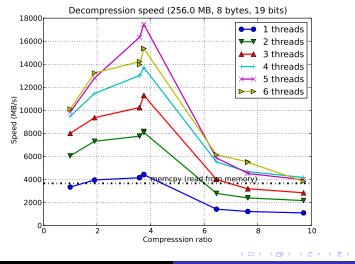
< 🗇 > < 🖻 >

Blosc: Beyond memcpy() Performance (I)



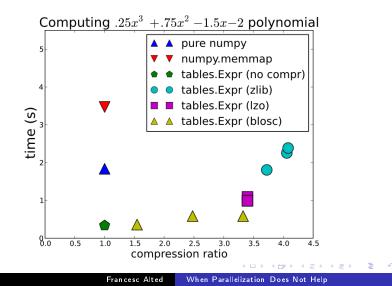
Francesc Alted When Parallelization Does Not Help

Blosc: Beyond memcpy() Performance (II)



Francesc Alted When Parallelization Does Not Help

Blosc: A Practical Application



Steps To Accelerate Your Code

In order of importance:

- Make use of memory-efficient libraries (most of the current bottlenecks fall into this category).
- Apply the blocking technique and vectorize your code.
- Parallelize using:
 - Multi-threading (using Cython, so as to bypass the GIL).
 - Explicit message passing (IPython, MPI via mpi4py).

Parallelization is usually a pretty complex thing to program!

Steps To Accelerate Your Code

In order of importance:

- Make use of memory-efficient libraries (most of the current bottlenecks fall into this category).
- Apply the blocking technique and vectorize your code.
- Parallelize using:
 - Multi-threading (using Cython, so as to bypass the GIL).
 - Explicit message passing (IPython, MPI via mpi4py).

Parallelization is usually a pretty complex thing to program!

Summary

- These days, you should understand the hierarchical memory model if you want to get decent performance.
- Leverage existing memory-efficient libraries for performing your computations optimally.
- Do not blindly try to parallelize immediately. Do this as a last resort!

More Info

🍆 Ulrich Drepper

What Every Programmer Should Know About Memory RedHat Inc..2007

Francesc Alted

Why Modern CPUs Are Starving and What Can Be Done about It

Computing in Science and Engineering, March 2010

Francesc Alted

Blosc: A blocking, shuffling and loss-less compression library http://blosc.pytables.org

What's Next

In the following exercises we will:

- Experiment with the blocking technique.
- Learn about under which situations you can expect your problems to scale (and when not!).
- Answer remaining pending open questions.

Questions?

Contact:

faltet@pytables.org

Francesc Alted When Parallelization Does Not Help

æ