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Serialization vs Storage Solutions

@ We follow the convention that Serialization is a way to make
persistent data that fits in-memory.

@ By Storage Solutions we mean ways to keep data on-disk,
but without the in-memory limitation.
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Serialization vs Storage Solutions

@ We follow the convention that Serialization is a way to make
persistent data that fits in-memory.

@ By Storage Solutions we mean ways to keep data on-disk,
but without the in-memory limitation.

Sometimes the limits are fuzzy though! J
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@ Serialization tools
@ Serializing (pickling) general objects
@ The shelve module
@ Serializing NumPy objects

© Storage solutions
@ Relational databases
@ Numerical binary formats: HDF5/NetCDF4
@ The PyTables database
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Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

What “Serialization” Means?

SERIALIZATION
FILE
- .
OBJECT — | STREAM OF BYTES DB
MEMORY
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Serialization Tools

There are literally zillions of serialization tools and formats (text,
XML, or binary based), but we'll be focusing on a few of those that
are:

@ Easy to use
@ Space-efficient
o Fast

In particular, we are not going to discuss text-based formats (e.g.
XML, CSV, JSON, YAML ...).
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@ Serialization tools
@ Serializing (pickling) general objects
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Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

The pickle Module

Serializes an object into a stream of bytes that can be saved to a
file and later restored:

import pickle

obj = SomeObject ()

f = open(filename, ’wb’)
pickle.dump(obj, f)
f.close()
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Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

The pickle Module

Serializes an object into a stream of bytes that can be saved to a
file and later restored:

import pickle

obj = SomeObject ()

f = open(filename, ’wb’)
pickle.dump(obj, f)

f.close()
>
import pickle
f = open(filename, ’rb’)
obj = pickle.load(f)
f.close() )
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Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

pickle Capabilities

@ It can serialize both basic Python data structures or
user-defined classes.

@ Always serializes data, not code (it tries to import classes if
found in the pickle).
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The shelve module
Serializing NumPy objects

pickle Capabilities

@ It can serialize both basic Python data structures or
user-defined classes.

@ Always serializes data, not code (it tries to import classes if
found in the pickle).

For security reasons, programs should not unpickle data received
from untrusted sources.
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Serializing NumPy objects

Its cPickle Cousin

@ Implemented in C (i.e. significantly faster than pickle).
@ But, it is a bit more restrictive (nothing grave).

@ Python 3 pickle can use the C implementation transparently.
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pickle/cPickle Limitations

@ You need to reload all the data in the pickle before you can
use any part of it. This is inconvenient for large datasets.

@ Data can only be retrieved by other Python interpreters. You
loose data portability with other languages.
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Recommendations for Using pickle

@ Use it mainly for small data structures.

@ If you have a lot of variables that you want to save, use a
dictionary for tying them together first.
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Recommendations for Using pickle

@ Use it mainly for small data structures.

@ If you have a lot of variables that you want to save, use a
dictionary for tying them together first.

@ When using the IPython shell, be sure to use the very
convenient %store magic (it uses pickle under the hood):

>>> A = [’hello’,10,’world’]
>>> Ystore A

>>> Exit

$ ipython

>>> print A

[’hello’, 10, ’world’]
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@ Serialization tools

@ The shelve module
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The shelve Module

@ Provides support for persitent objects using a special “shelf”
object.

@ The “shelf” behaves like a disk-based dictionary (DBM-style).

@ The values of the dictionary can be any object that can be
pickled.
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Example with shelve

>>> import shelve

>>>

>>> db = shelve.open('"database", "c")
>>> db["one"] = 1

>>> db["two"] = 2

>>> db["three"] = 3

>>> db.close()

# In another session

>>> db = shelve.open('"database", "r")
>>> print db["one"]

1

>>> print db["three"]

3
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Pros and Cons of the shelve Module

Easy to retrieve just a selected set of variables.
Specially useful for handling large series of pickles.

Suffers the same problems than pickle.
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@ Serialization tools

@ Serializing NumPy objects
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Pickling a NumPy Array

>> a = np.linspace(0, 100, 1e7)

>> time pickle.dump(a, open(’pl’,’w’))
CPU times: wuser 5.89 s, sys: 0.59 s, total: 6.48 s

>> time pickle.dump(a, open(’p2’,’w’), pickle.HIGHEST_PROTOCOL)
CPU times: wuser 0.05 s, sys: 0.12 s, total: 0.16 s

>> time cPickle.dump(a, open(’p3’,’w’), pickle.HIGHEST_PROTOCOL)
CPU times: wuser 0.02 s, sys: 0.08 s, total: 0.11 s

>> 1ls -sh pl p2 p3
186M p1 77M p2 77M p3

Always try to use cPickle and HIGHEST_PROTOCOL. J
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Pickling & Compression

>> time ap = cPickle.dumps(a, protocol=cPickle.HIGHEST_PROTOCOL)
CPU times: wuser 0.03 s, sys: 0.07 s, total: 0.10 s
Wall time: 0.10 s

>> time apz = zlib.compress (ap)
CPU times: wuser 4.68 s, sys: 0.02 s, total: 4.70 s
Wall time: 4.71 s

>> time apb = blosc.compress(ap, a.dtype.itemsize)
CPU times: wuser 0.26 s, sys: 0.00 s, total: 0.26 s
Wall time: 0.03 s

>> len(ap)/1024., len(apz)/1024., len(apb)/1024.
(78125.1318359375, 51752.8623046875, 7455.8310546875)

Compresion can be a huge advantage, most specially with Blosc. J
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@ Relational databases
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What Is a Relational Database?

@ A relational database matches data by using common
characteristics found within the data set.

@ The resulting groups of data are organized and are much easier
for many people to understand.
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Example of the Relational Model

PublD Publisher PubAddress
03-4472822 | Random House 123 4th Street, New York
04-7733908 | Wiley and Sons 45 Lincoln Bivd, Chicago
03-4859223 | O'Reilly Press 77 Boston Ave, Cambridge
03-3920886 | City Lights Books | 99 Market, San Francisco

AuthorlD AuthorName  AuthorBDay
345-28-2838 | Haile Selassie 14-Aug-82
392-48-9965 | Joe Blow 14-Mar-15
454-22-4012 | Sally Hemmings 12-Sept-70
663-58-1254 | Hannah Arendt 12-Mar-06

ISEN AuthorlD PublD Date Title
1-34532-482-1 345-28-2838 | 03-4472822 | 1990 Cold Fusion for Dummies
1-38482-895-1 392-48-9965 | 04-7733903 | 1985 Macrame and Straw Tying
2-35921-499-4 | 454-22.4012 | 03-4859223 | 1952 Fluid Dynamics of Aquaducts
1-38278-293-4 | 663-59-1254 | 03-3920886 1967 Beads, Baskets & Revolution
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Queries with the SQL Language

Simple query involving one single table (relation):
SELECT AuthorName FROM AUTHORS WHERE AuthorBDay > 1970 J

Complex query involving multiple relations:

SELECT AuthorName FROM AUTHORS a, BOOKS b, PUBLISHERS p
WHERE AuthorBDay > 1970
AND a.AuthorID = b.AuthorID
AND b.PubID = p.PubID
AND p.Publisher = "Random House"
GROUP BY AuthorBDay

Beware: complex queries can consume a lot of resources!
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Relational Database API Specification

@ The Python community has developed a standard API for
accessing relational databases in a uniform way (PEP 249).

@ Specific database modules (e.g. MySQL, Oracle, Postgres ...)
follow this specification, but may add more features.

@ Python comes with SQLite, a relational database accessible via
the sqlite3 module.
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Code Example

mycursor . execute (
"SELECT match_id from match_cleanmatch ¢
"where cleanmatch_id = s "
" AND customer_id = %s",
(cleanmatch_id, customer_id))
rows = self.cursor.fetchall()
mycursor.execute (
"DELETE FROM cleanmatch_ where id = ¥%s",
(cleanmatch_id, ))
self.db.commit ()
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RDBMs Highlights

o ACID (atomicity, consistency, isolation, durability) properties,
that can be translated into:

o Referential integrity
@ Transaction support
@ Data consistency

@ Indexing capabilities (accelerate queries in large tables)

But this comes with a price... J
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RDBMs Drawbacks

@ Insertions and updates are SLOOOW.
@ Not very disk space efficient.

@ Not well adapted to handle large numerical datasets (no direct
interface with NumPy).
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@ Numerical binary formats: HDF5/NetCDF4
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What's a Numerical Binary Format?

@ It is a format specialized in saving and retrieving large
amounts of numerical data.

@ Usually come with libraries that can understand that format.

@ There are a really huge number of numerical formats
depending on the needs.
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Why We Need a Binary Format?

@ They are closer to memory representation.

@ They are CPU-friendly (in general you do not have to convert
from one representation to another).

@ Their representation is space-efficient (1 byte in-memory ~ 1
bytes on disk).
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Drawbacks of Binary Formats

o Lack of standarization (way too many formats out there). But
some (HDF5, NetCDF4) are spreading a lot.

@ Lack of security features (e.g. no ACID support). Performance
is way more important.

@ Easy to corrupt files under some conditions (e.g. power
outage). Next version of HDF5 (1.10) will implement
journaling so as to fix this.
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HDF5: Hierachical Data Structures
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NetCDF4

network Common Data Form v4

@ NetCDF is a set of libraries and data formats that support
array-oriented scientific data.

@ NetCDF4 uses HDF5 as the underlying storage layer.

@ Creating a netCDF4 file with the netCDF4 library results in an
HDFS5 file.

@ Very spread in Oceanography, Meteorology and similar
disciplines.
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Python Interfaces

Interfaces to binary formats (HDF5, NetCDF4):
@ Interfaces to HDF5:

o PyTables
o h5py

o Interfaces to NetCDF4:

@ netcdf4-python
o Scientific.|O.NetCDF
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Python Interfaces

Interfaces to binary formats (HDF5, NetCDF4):
@ Interfaces to HDF5:

o PyTables
o h5py

o Interfaces to NetCDF4:

@ netcdf4-python
o Scientific.|O.NetCDF

All these use NumPy as the default memory container for 1/0. J
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Advantages of Using NumPy As Memory Container

Interfaces for RDBMS in Python lacks support for direct NumPy
containers (very inefficient!).

Python RDBMS
container container

NumPy
container ‘—J

All of the Python interfaces mentioned before are using NumPy as
default container.

Filter

NumPy
container

Compression /
Decompression
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Easing Disk Access Via NumPy Paradigm

® array[1]
® array[3:1000, ..., :10]
o (arrayl**3 / array2) - sin(array3) (PyTables)

There is a lot of value in adopting this paradigm: you don’t need to
learn another one!
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@ The PyTables database
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Easy To Use

Natural naming

# access to file:/groupl/table
table = file.root.groupl.table

Support for generalized and fancy indexing

array[idx, start:stop, :, start:stop:stepl] # hyperslicing
array[1, [1,5,10], ..., -1] # sparse reads (since 2.2)

Support for efficient queries

# get the values in coll that satisfy a certain condition
[r[’coll’] for r in table.where((1.3 < col3) & (col2 <= 2.))]
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How PyTables Fights CPU Starvation?

Basically, by applying blocking techniques and by leveraging high
performance packages like:

HDF5 A library & format thought out for managing very
large datasets in an efficient way.

NumPy A Python package for handling large homogeneous
and heterogeneous datasets.

Numexpr Increase the performance of NumPy in complex
operations by applying blocking.
Blosc A high-performance compressor meant for binary data
(available in the short future).
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Advantages of Using HDF5 As Disk Container (I)

Insert time for 109 rows (seconds)

W Postgres 8.4
B PyTables 2.2

0 5000 10000 15000 20000 25000
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Advantages of Using HDF5 As Disk Container (I1)

Table size for 10”9 rows (MB)

W Postgres 8.4
® PyTables 2.2

0 10000 20000 30000 40000 50000 60000
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HDF5 + Numexpr + Blosc

Delivering extreme performance (while keeping disk requeriments low)

Size for 10 Mrow table and query time for complex query (not indexed)
25 - -

¥ V Postgres 8.4.2 v
A A PyTables 2.2 (no compr)
2ol | & A PyTables 2.2 (blosc 1,5,9)
W B PyTables 2.2 (lzo 1,5,9)
@® @ PyTables 2.2 (zlib 1,5,9)
15 Q
L
(0]
E
+1.0
0.5 A
0.0

20 800 1000 1200 1400

00
dISk space used by database (MB)
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Advanced Capabilities in Forthcoming PyTables 2.3

All the features in extinct PyTables Pro have been implemented in
the next open source PyTables version:

Column indexing Queries in tables having up to 1 billion rows can
be typically done in less than 1 second.

Customizable index quality The indexes can be created with an
optimization level (specified as a number ranging
from 0 to 9).

Improved cache system for both metadata and regular data. Allows
for maximum speed during intensive node browsing
and data queries.
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Customizable Indexes

Sizes for index of a 1 Grow column with different optimizations
(PyTables Pro 2.1 beta2 vs PostgreSQL 8.2.6)

Il Optlevel 0
Il Optlevel 6
[ Optlevel 9

15x lighter

Disk Size (MB)

0 Original  UltraLight Light Medium Full PostgreSQL
column
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Indexed Query Performance

Query time for complex query and 1 Grow (indexed)

10
O‘ -
'O
10° | T ]
10' b 1
g0} 1
E
10'1 L
== Postgres 8.4.2
= PyTables Pro 2.2 nocompr
102 —— PyTables Pro 2.2 zlibl J
- PyTables Pro 2.2 Izol
— PyTables Pro 2.2 blosc5
10-3 i i i i i
10° 10! 10° 10° 10* 10° 10° 10’

Number of hits
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Summary

Pickle is the most basic, but still powerful, way to serialize
Python data. But it is mainly meant for small datasets and it
is not portable.

Relational databases are portable, mature and solid as a rock.
However, they do not interact well with NumPy and write
performance is pretty lame.

HDF5 / NetCDF4 formats show best performance, Python
APIs interacts well with NumPy and are extremely portable.
They lack safety features.

PyTables adds additional bells and whistles beyond HDF5 and
NumPy capabilites: efficient queries, indexing and on-disk
operations.
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More Info

¥ David Beazley
Python — Essential Reference
4th edition
Addisson-Wesley, 2009

¥ Alan Beaulieu
Learning SQL
2nd edition
O'Reilly Media, 2009

» PyTables Governance Team
PyTables: hierarchical datasets
https://github.com/PyTables
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https://github.com/PyTables

Questions?

Contact:

faltet@pytables.org
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