Data Persistence
From Pickle To Databases

Francesc Alted

PyTables Author
Barcelona Music and Audio Tecnology (BMAT)

Advanced Scientific Programming in Python
2011 Summer School, St Andrews, Scotland

Francesc Alted Data Persistence

Serialization vs Storage Solutions

@ We follow the convention that Serialization is a way to make
persistent data that fits in-memory.

@ By Storage Solutions we mean ways to keep data on-disk,
but without the in-memory limitation.

Francesc Alted Data Persistence

Serialization vs Storage Solutions

@ We follow the convention that Serialization is a way to make
persistent data that fits in-memory.

@ By Storage Solutions we mean ways to keep data on-disk,
but without the in-memory limitation.

Sometimes the limits are fuzzy though! J

Francesc Alted Data Persistence

Outline

@ Serialization tools
@ Serializing (pickling) general objects
@ The shelve module
@ Serializing NumPy objects

© Storage solutions
@ Relational databases
@ Numerical binary formats: HDF5/NetCDF4
@ The PyTables database

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

What “Serialization” Means?

SERIALIZATION
FILE
- .
OBJECT — | STREAM OF BYTES DB
MEMORY

Francesc Alted Data Persistence

Serialization tools ializing (pickling) general objects
module
NumPy objects

Serialization Tools

There are literally zillions of serialization tools and formats (text,
XML, or binary based), but we'll be focusing on a few of those that
are:

@ Easy to use
@ Space-efficient
o Fast

In particular, we are not going to discuss text-based formats (e.g.
XML, CSV, JSON, YAML ...).

Francesc Alted Data Persistence

Serialization tools ng (pickling) general objects
re module
NumPy objects

Outline

@ Serialization tools
@ Serializing (pickling) general objects

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

The pickle Module

Serializes an object into a stream of bytes that can be saved to a
file and later restored:

import pickle

obj = SomeObject ()

f = open(filename, ’wb’)
pickle.dump(obj, f)
f.close()

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

The pickle Module

Serializes an object into a stream of bytes that can be saved to a
file and later restored:

import pickle

obj = SomeObject ()

f = open(filename, ’wb’)
pickle.dump(obj, f)

f.close()
>
import pickle
f = open(filename, ’rb’)
obj = pickle.load(f)
f.close())

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

pickle Capabilities

@ It can serialize both basic Python data structures or
user-defined classes.

@ Always serializes data, not code (it tries to import classes if
found in the pickle).

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

pickle Capabilities

@ It can serialize both basic Python data structures or
user-defined classes.

@ Always serializes data, not code (it tries to import classes if
found in the pickle).

For security reasons, programs should not unpickle data received
from untrusted sources.

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

Its cPickle Cousin

@ Implemented in C (i.e. significantly faster than pickle).
@ But, it is a bit more restrictive (nothing grave).

@ Python 3 pickle can use the C implementation transparently.

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

pickle/cPickle Limitations

@ You need to reload all the data in the pickle before you can
use any part of it. This is inconvenient for large datasets.

@ Data can only be retrieved by other Python interpreters. You
loose data portability with other languages.

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

Recommendations for Using pickle

@ Use it mainly for small data structures.

@ If you have a lot of variables that you want to save, use a
dictionary for tying them together first.

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

Recommendations for Using pickle

@ Use it mainly for small data structures.

@ If you have a lot of variables that you want to save, use a
dictionary for tying them together first.

@ When using the IPython shell, be sure to use the very
convenient %store magic (it uses pickle under the hood):

>>> A = [’hello’,10,’world’]
>>> Ystore A

>>> Exit

$ ipython

>>> print A

[’hello’, 10, ’world’]

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

Outline

@ Serialization tools

@ The shelve module

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

The shelve Module

@ Provides support for persitent objects using a special “shelf”
object.

@ The “shelf” behaves like a disk-based dictionary (DBM-style).

@ The values of the dictionary can be any object that can be
pickled.

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
Serializing NumPy objects

Example with shelve

>>> import shelve

>>>

>>> db = shelve.open('"database", "c")
>>> db["one"] = 1

>>> db["two"] = 2

>>> db["three"] = 3

>>> db.close()

In another session

>>> db = shelve.open('"database", "r")
>>> print db["one"]

1

>>> print db["three"]

3

Francesc Alted Data Persistence

Serialization tools Serializing (pickling) general objects
The shelve module
g NumPy objects

Pros and Cons of the shelve Module

Easy to retrieve just a selected set of variables.
Specially useful for handling large series of pickles.

Suffers the same problems than pickle.

Francesc Alted Data Persistence

Serialization tools i pickling) general objects
The s re module
Serializing NumPy objects

Outline

@ Serialization tools

@ Serializing NumPy objects

Francesc Alted Data Persistence

Serialization tools iali pickling) general objects

ve
Serializing NumPy objects

Pickling a NumPy Array

>> a = np.linspace(0, 100, 1e7)

>> time pickle.dump(a, open(’pl’,’w’))
CPU times: wuser 5.89 s, sys: 0.59 s, total: 6.48 s

>> time pickle.dump(a, open(’p2’,’w’), pickle.HIGHEST_PROTOCOL)
CPU times: wuser 0.05 s, sys: 0.12 s, total: 0.16 s

>> time cPickle.dump(a, open(’p3’,’w’), pickle.HIGHEST_PROTOCOL)
CPU times: wuser 0.02 s, sys: 0.08 s, total: 0.11 s

>> 1ls -sh pl p2 p3
186M p1 77M p2 77M p3

Always try to use cPickle and HIGHEST_PROTOCOL. J

Francesc Alted Data Persistence

Serialization tools iali pickling) general objects

ve
Serializing NumPy objects

Pickling & Compression

>> time ap = cPickle.dumps(a, protocol=cPickle.HIGHEST_PROTOCOL)
CPU times: wuser 0.03 s, sys: 0.07 s, total: 0.10 s
Wall time: 0.10 s

>> time apz = zlib.compress (ap)
CPU times: wuser 4.68 s, sys: 0.02 s, total: 4.70 s
Wall time: 4.71 s

>> time apb = blosc.compress(ap, a.dtype.itemsize)
CPU times: wuser 0.26 s, sys: 0.00 s, total: 0.26 s
Wall time: 0.03 s

>> len(ap)/1024., len(apz)/1024., len(apb)/1024.
(78125.1318359375, 51752.8623046875, 7455.8310546875)

Compresion can be a huge advantage, most specially with Blosc. J

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Outline

© Storage solutions
@ Relational databases

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

What Is a Relational Database?

@ A relational database matches data by using common
characteristics found within the data set.

@ The resulting groups of data are organized and are much easier
for many people to understand.

Francesc Alted Data Persistence

t t Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
Sum The PyTables database

Example of the Relational Model

PublD Publisher PubAddress
03-4472822 | Random House 123 4th Street, New York
04-7733908 | Wiley and Sons 45 Lincoln Bivd, Chicago
03-4859223 | O'Reilly Press 77 Boston Ave, Cambridge
03-3920886 | City Lights Books | 99 Market, San Francisco

AuthorlD AuthorName AuthorBDay
345-28-2838 | Haile Selassie 14-Aug-82
392-48-9965 | Joe Blow 14-Mar-15
454-22-4012 | Sally Hemmings 12-Sept-70
663-58-1254 | Hannah Arendt 12-Mar-06

ISEN AuthorlD PublD Date Title
1-34532-482-1 345-28-2838 | 03-4472822 | 1990 Cold Fusion for Dummies
1-38482-895-1 392-48-9965 | 04-7733903 | 1985 Macrame and Straw Tying
2-35921-499-4 | 454-22.4012 | 03-4859223 | 1952 Fluid Dynamics of Aquaducts
1-38278-293-4 | 663-59-1254 | 03-3920886 1967 Beads, Baskets & Revolution

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
¢ The PyTables database

Queries with the SQL Language

Simple query involving one single table (relation):
SELECT AuthorName FROM AUTHORS WHERE AuthorBDay > 1970 J

Complex query involving multiple relations:

SELECT AuthorName FROM AUTHORS a, BOOKS b, PUBLISHERS p
WHERE AuthorBDay > 1970
AND a.AuthorID = b.AuthorID
AND b.PubID = p.PubID
AND p.Publisher = "Random House"
GROUP BY AuthorBDay

Beware: complex queries can consume a lot of resources!

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Relational Database API Specification

@ The Python community has developed a standard API for
accessing relational databases in a uniform way (PEP 249).

@ Specific database modules (e.g. MySQL, Oracle, Postgres ...)
follow this specification, but may add more features.

@ Python comes with SQLite, a relational database accessible via
the sqlite3 module.

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Code Example

mycursor . execute (
"SELECT match_id from match_cleanmatch ¢
"where cleanmatch_id = s "
" AND customer_id = %s",
(cleanmatch_id, customer_id))
rows = self.cursor.fetchall()
mycursor.execute (
"DELETE FROM cleanmatch_ where id = ¥%s",
(cleanmatch_id,))
self.db.commit ()

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

RDBMs Highlights

o ACID (atomicity, consistency, isolation, durability) properties,
that can be translated into:

o Referential integrity
@ Transaction support
@ Data consistency

@ Indexing capabilities (accelerate queries in large tables)

But this comes with a price... J

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

RDBMs Drawbacks

@ Insertions and updates are SLOOOW.
@ Not very disk space efficient.

@ Not well adapted to handle large numerical datasets (no direct
interface with NumPy).

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Outline

© Storage solutions

@ Numerical binary formats: HDF5/NetCDF4

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

What's a Numerical Binary Format?

@ It is a format specialized in saving and retrieving large
amounts of numerical data.

@ Usually come with libraries that can understand that format.

@ There are a really huge number of numerical formats
depending on the needs.

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Why We Need a Binary Format?

@ They are closer to memory representation.

@ They are CPU-friendly (in general you do not have to convert
from one representation to another).

@ Their representation is space-efficient (1 byte in-memory ~ 1
bytes on disk).

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Drawbacks of Binary Formats

o Lack of standarization (way too many formats out there). But
some (HDF5, NetCDF4) are spreading a lot.

@ Lack of security features (e.g. no ACID support). Performance
is way more important.

@ Easy to corrupt files under some conditions (e.g. power
outage). Next version of HDF5 (1.10) will implement
journaling so as to fix this.

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

HDF5: Hierachical Data Structures

/ (rool)

Three-
dimensional

array

Group A

‘ i Group B

Palette
Raster image

Raster image

Two-dimensional
aray

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

NetCDF4

network Common Data Form v4

@ NetCDF is a set of libraries and data formats that support
array-oriented scientific data.

@ NetCDF4 uses HDF5 as the underlying storage layer.

@ Creating a netCDF4 file with the netCDF4 library results in an
HDFS5 file.

@ Very spread in Oceanography, Meteorology and similar
disciplines.

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Python Interfaces

Interfaces to binary formats (HDF5, NetCDF4):
@ Interfaces to HDF5:

o PyTables
o h5py

o Interfaces to NetCDF4:

@ netcdf4-python
o Scientific.|O.NetCDF

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Python Interfaces

Interfaces to binary formats (HDF5, NetCDF4):
@ Interfaces to HDF5:

o PyTables
o h5py

o Interfaces to NetCDF4:

@ netcdf4-python
o Scientific.|O.NetCDF

All these use NumPy as the default memory container for 1/0. J

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Advantages of Using NumPy As Memory Container

Interfaces for RDBMS in Python lacks support for direct NumPy
containers (very inefficient!).

Python RDBMS
container container

NumPy
container ‘—J

All of the Python interfaces mentioned before are using NumPy as
default container.

Filter

NumPy
container

Compression /
Decompression

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Easing Disk Access Via NumPy Paradigm

® array[1]
® array[3:1000, ..., :10]
o (arrayl**3 / array2) - sin(array3) (PyTables)

There is a lot of value in adopting this paradigm: you don’t need to
learn another one!

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Outline

© Storage solutions

@ The PyTables database

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Easy To Use

Natural naming

access to file:/groupl/table
table = file.root.groupl.table

Support for generalized and fancy indexing

array[idx, start:stop, :, start:stop:stepl] # hyperslicing
array[1, [1,5,10], ..., -1] # sparse reads (since 2.2)

Support for efficient queries

get the values in coll that satisfy a certain condition
[r[’coll’] for r in table.where((1.3 < col3) & (col2 <= 2.))]

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

How PyTables Fights CPU Starvation?

Basically, by applying blocking techniques and by leveraging high
performance packages like:

HDF5 A library & format thought out for managing very
large datasets in an efficient way.

NumPy A Python package for handling large homogeneous
and heterogeneous datasets.

Numexpr Increase the performance of NumPy in complex
operations by applying blocking.
Blosc A high-performance compressor meant for binary data
(available in the short future).

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Advantages of Using HDF5 As Disk Container (I)

Insert time for 109 rows (seconds)

W Postgres 8.4
B PyTables 2.2

0 5000 10000 15000 20000 25000

Francesc Alted Data Persistence

Relational da
Storage solutions Numerical bir formats: HDF5/NetCDF4
The PyTables database

Advantages of Using HDF5 As Disk Container (I1)

Table size for 10”9 rows (MB)

W Postgres 8.4
® PyTables 2.2

0 10000 20000 30000 40000 50000 60000

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

HDF5 + Numexpr + Blosc

Delivering extreme performance (while keeping disk requeriments low)

Size for 10 Mrow table and query time for complex query (not indexed)
25 - -

¥ V Postgres 8.4.2 v
A A PyTables 2.2 (no compr)
2ol | & A PyTables 2.2 (blosc 1,5,9)
W B PyTables 2.2 (lzo 1,5,9)
@® @ PyTables 2.2 (zlib 1,5,9)
15 Q
L
(0]
E
+1.0
0.5 A
0.0

20 800 1000 1200 1400

00
dISk space used by database (MB)

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Advanced Capabilities in Forthcoming PyTables 2.3

All the features in extinct PyTables Pro have been implemented in
the next open source PyTables version:

Column indexing Queries in tables having up to 1 billion rows can
be typically done in less than 1 second.

Customizable index quality The indexes can be created with an
optimization level (specified as a number ranging
from 0 to 9).

Improved cache system for both metadata and regular data. Allows
for maximum speed during intensive node browsing
and data queries.

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Customizable Indexes

Sizes for index of a 1 Grow column with different optimizations
(PyTables Pro 2.1 beta2 vs PostgreSQL 8.2.6)

Il Optlevel 0
Il Optlevel 6
[Optlevel 9

15x lighter

Disk Size (MB)

0 Original UltraLight Light Medium Full PostgreSQL
column

Francesc Alted Data Persistence

Relational databases
Storage solutions Numerical binary formats: HDF5/NetCDF4
The PyTables database

Indexed Query Performance

Query time for complex query and 1 Grow (indexed)

10
O‘ -
'O
10° | T]
10' b 1
g0} 1
E
10'1 L
== Postgres 8.4.2
= PyTables Pro 2.2 nocompr
102 —— PyTables Pro 2.2 zlibl J
- PyTables Pro 2.2 Izol
— PyTables Pro 2.2 blosc5
10-3 i i i i i
10° 10! 10° 10° 10* 10° 10° 10’

Number of hits

Francesc Alted Data Persistence

Summary

Pickle is the most basic, but still powerful, way to serialize
Python data. But it is mainly meant for small datasets and it
is not portable.

Relational databases are portable, mature and solid as a rock.
However, they do not interact well with NumPy and write
performance is pretty lame.

HDF5 / NetCDF4 formats show best performance, Python
APIs interacts well with NumPy and are extremely portable.
They lack safety features.

PyTables adds additional bells and whistles beyond HDF5 and
NumPy capabilites: efficient queries, indexing and on-disk
operations.

Francesc Alted Data Persistence

More Info

¥ David Beazley
Python — Essential Reference
4th edition
Addisson-Wesley, 2009

¥ Alan Beaulieu
Learning SQL
2nd edition
O'Reilly Media, 2009

» PyTables Governance Team
PyTables: hierarchical datasets
https://github.com/PyTables

Francesc Alted Data Persistence

https://github.com/PyTables

Questions?

Contact:

faltet@pytables.org

Francesc Alted Data Persistence

	Serialization tools
	Serializing (pickling) general objects
	The shelve module
	Serializing NumPy objects

	Storage solutions
	Relational databases
	Numerical binary formats: HDF5/NetCDF4
	The PyTables database

	Summary

