
Python School

OOP and Design patterns

Exercises

Authors: Bartosz Telenczuk, Niko Wilbert

1. (20 min) The graph module (provided in the repository) contains a set of
classes for representing graphs. On a piece of paper reverse engineer its
design:

(a) Write down all class names, their methods and public properties; try
to understand what all of them do (read the docstrings!).

(b) Figure out how different classes are related (inheritance versus com-
position); draw a simple diagram.

(c) Use the classes to represent the following graph:

2. (40 min) Modify the code in starbuzz.py to use the Decorator Pattern.

(a) Define a class BeverageDecorator which is instantiated with a bev-
erage object and contains two methods: get cost which adds the
cost of the decorator to the total drink cost and get description

which updates the description of the drink.

(b) Subclassing BeverageDecorator define new ingredients: Milk and
Cream. Use the ingridients to produce new drinks combinations.

(c) (Optional) Write an unit test to test your code.

3. (30 min) Implement a Python iterator which iterates over string characters
(ASCII only) returning their ASCII code (obtained by ord function):

(a) Define a new iterator class which contains two methods:

1



• init – a constructor taking the ASCII string as a argument,

• next – returns the ASCII code of the next character or raises a
StopIteration exception if the string end was encountered.

(b) Define a new iterable class which wraps around a string and contains
iter method which returns the iterator instance.

(c) Test your code using explicit calls of next method (see example in
the lecture) and for loop.

(d) (Optional) Implement the same functionality using generators.

(e) (Optional) Define a new iterator which returns the same ASCII codes
but in a random order. Use it to iterate over your iterable object.

4. (55 min) Extend the graph library to solve a search problem. In this
exercise, your goal is to write a travel planning application based on the
graph module. We want to represent a set of cities as nodes in a graph,
with edges between nodes representing different kinds of transportation.

(a) Define a class CityNode which extends Node class by a new property
name which is defined on class instantiation.

(b) Define a class TransporationEdge extending Edge class. The edges
should be directed and have two kinds of weights: travel time and
cost and a short description defining the means of transportation.

(c) Implement the following city graph as an example:

(d) Now we want to find the quickest from Berlin to Cologne. Open
shortest path.py file. It contains SearchAlgorithm class, which
implements Dijkastra algorithm for finding the shortest path in a
graph.

(e) Define a new class SearchGraph extending Graph class with methods
for searching for the shortest path. Which design pattern can you
use in the example?

(f) Define new search algorithms to find the cheapest and fastest paths.

2



(g) Find the cheapest and fastest paths between Berlin and Cologne.

3


