Cython tutorial
Release 2011

Pauli Virtanen

September 13, 2011

CONTENTS

The Quest for Speed: Cython 3
Know the grounds 5
2.1 A qUestion e e e e e e e e e e e e 5
22 Whodoyoucall?. e 5
23 Cython e e 6
24 Cythonisused by.... o o e 6
What’s there to optimize? 7
3.1 Starting POint L L. e e e e e e e e 7
32 BOXING e 7
3.3 Numpy performance o v v i e 8
34 FunctioncallS. e e 8
3.5 Global Interpreter Lock e 8
Regaining speed with Cython 9
4.1 ThePlan e e 9
4.2 Example problem: Planetinorbit Lo Lo 9
4.3 Measure firSt e e e e 9
44 My firstCython program o oL e e e e e e 10
4.5 Compiling the Cython program 0 v i i i e e e e e e e e e e e e 12
4.6 Typedeclarationso e e e e e e e e e e e e e e 12
477 Cython annotated output e e 13
4.8 Typedeclarations forclasses oL 13
4.9 Functiondeclarations e e e 14
410 Interfacing with C L L e e e e e e e e e e e 14
4.11 Givingupsome of Python e e 15
4.12 Releasingthe GIL e 15
413 Summary e e 16
4.14 Ohsnap! L e e e 16
Numpy arrays in Cython 17
5.1 Basics e e e e e e 17
5.2 Datatypes . . o v i it e e e e e e e e e e e e e e e e e e 17
53 Whatisfaster e e e e 17
54 Accessingtheraw data L. Lo e e e e e e e e e 18
5.5 Tumingoff more Python L 18
Useful stuff to know 19
6.1 Profiling Cythoncode e e e e 19

6.2 Exceptionsincdeffunctions L e 19
6.3 Moreoncompilation L. e e e e e e e e e e e e e 20
6.4 Python-compatible syntaxo e e e e e e e e e e 20
6.5 Andmore e e 21
Exercises 23
7.1 Exercise 1: Cythonization e 23
7.2 Exercise 2: Wrapping C L 23
7.3 Exercise 3: Conway’s Game of Life 24
7.4 Exercise 4: On better algorithms... o L 25

Cython tutorial, Release 2011

authors Pauli Virtanen

... some ideas shamelessly stolen from last year’s tutorial by Stefan van der Walt...

CONTENTS 1

Cython tutorial, Release 2011

2 CONTENTS

CHAPTER
ONE

THE QUEST FOR SPEED: CYTHON

Pauli Virtanen
Institute of Theoretical Physics and Astrophysics, University of Wiirzburg

St. Andrews, 13 Sep 2011

Cython tutorial, Release 2011

4 Chapter 1. The Quest for Speed: Cython

CHAPTER
TWO

KNOW THE GROUNDS

2.1 A question

¢ Too slow. What to do?
Execution speed

Python
Py+Numpy

?

Your time sunk

]
=~
o
.a
>
=

2.2 Who do you call?

* Back to writing C (and dealing with Python C API)?

Cython tutorial, Release 2011

2.3 Cython

@gthon

» Language: superset of Python (mostly)
* Compiles to (CPython-specific) C code
* Has features to overcome several Python overheads
* Makes interfacing with existing C code easy.
... and avoids the pain of the Python C API!
¢ Ancestry: Cython is based on Pyrex (2002)
[1] http://cython.org/

2.4 Cython is used by...

e Numpy (a little bit) for performance

¢ Scipy (slightly more) for performance & wrapping C

¢ Sage, symbolic math software, for performance & wrapping C
* mpi4py, for wrapping C

* petsc4py, for wrapping C

* [xml, XML processing, for wrapping C

* & others...

Chapter 2. Know the grounds

http://cython.org/

CHAPTER
THREE

WHAT’S THERE TO OPTIMIZE?

3.1 Starting point

* Python: an interpreted, dynamic language

¢ Overheads:

— Interpreting itself

Stuff is in boxes

— Global interpreter lock

3.2 Boxing

Function calls cost more

PyObject PyObject
type: integer type: string
int string
42 n n| ! n
other stuff ... other stuff ...

>>>42 + 1
PyObject PyObject
type: integer type: integer
+
otheNstuff ... oll[er stuff ...

oh\\it's an iryeger
int int —
fel+1

PyObject - re-box

type: inteﬁ/

other stuff ...

Everything is an object, everything is in a box: boxing—unboxing overhead

Cython tutorial, Release 2011

3.3 Numpy performance

PyObject

type: ndarray

int

42142

42

42

42

42

42

42142

42

42

42

42

42

other stuff ...

Numpy has large boxes: negligible overhead for large arrays

3.4 Function calls

>>> def add(a, b): return a+b

>>> add(1, 2)

add

PyObject

type: function

other stuff ...

P

l

a PyObject b Py Object
type; integer type; integer
. .
other stuff agper stuff ..

PyObject /

type: bfple
Y S
Rad [

other stuff ...

=yl

argument list

Python: - Hmm, "add" seems to be a callable.

Python: - Hey "add", here are some arguments for you!
add: - OK, I'll unpack the arg list, and try something with them...

returna + b

Python: - So, call a._add__ (b) and use it as return value

Function calls involve (some) boxing and checking: some overhead

3.5 Global Interpreter Lock

 Python can have multiple threads

¢ It can interpret Python code in a single thread at a time.

However...

— I/O works fine in parallel

— Non-Python code OK (<= insert Cython here)

— Much of Numpy is non-Python code

Chapter 3. What’s there to optimize?

CHAPTER
FOUR

REGAINING SPEED WITH CYTHON

4.1 The Plan

» Take a piece of pure-Python code

* Overcome overheads (where needed) with Cython:

Interpretation: | compiled to C

Stuff in boxes: | explicit types

Function calls: | even more explicit types
GIL: releasing GIL

4.2 Example problem: Planet in orbit

* Solving an ordinary differential equation

* No way to vectorize! (Numpy does not help here)

Cython to the rescue?

4.3 Measure first

* Measure before you cut

— Is/Would pure-Python be too slow?

<l

=l

for j in range(n_steps):

Fx = ...
X = X + dt*vx
y =y + dt*vy

vX = vX + dt*Fx/m

Cython tutorial, Release 2011

— Is ~ 10-100x speedup enough? (Note: usual max, discounting Numpy...)
— Minimize work by locating hotspots (profile, guess)
Scientific code: usually few hot spots
e Demo (using 1ine_profiler):

Add @profile to functions (& comment out plot commands)
$ kernprof.py -1 run_gravity.py
$ python -m line_profiler run_gravity.py.lprof

4.4 My first Cython program

gravity.py

from math import sqgrt

class Planet (object) :
def init__ (self):
some initial position and velocity
self.x = 1.0
self.y = 0.0
self.z = 0.0

self.vx = 0.0
self.vy = 0.5
self.vz = 0.0

some mass
self.m = 1.0

def single_step(planet, dt):
"""Make a single time step"""

Compute force: gravity towards origin
distance = sqrt(planet.x*+2 + planet.y*x2 + planet.z*+*2)

Fx = -planet.x / distancex=*3
Fy = -planet.y / distancex«3
Fz = -planet.z / distancex«3

Time step position, according to velocity
planet.x += dt » planet.vx
planet.y += dt * planet.vy
planet.z += dt * planet.vz

Time step velocity, according to force and mass
planet.vx += dt * Fx / planet.m
planet.vy += dt = Fy / planet.m
planet.vz += dt » Fz / planet.m

def step_time(planet, time_span, n_steps):
"""Make a number of time steps forward """

dt = time_span / n_steps

for j in range(n_steps):
single_step (planet, dt)

10 Chapter 4. Regaining speed with Cython

Cython tutorial, Release 2011

gravity_cy.pyx

from math import sqgrt

class Planet (object) :

def

def

def _ init_ (self):

some initial position and velocity
self.x = 1.0

self.y = 0.0

self.z = 0.0

self.vx = 0.0

self.vy = 0.5

self.vz = 0.0

some mass
self.m = 1.0

single_step (planet, dt):
"""Make a single time step"""

Compute force: gravity towards origin
distance = sqgrt(planet.x*+2 + planet.y*+2 + planet.zx*x*2)

Fx = -planet.x / distancex=*3
Fy = -planet.y / distancex=3
Fz = -planet.z / distancex=*3

Time step position, according to velocity
planet.x += dt * planet.vx
planet.y += dt * planet.vy
planet.z += dt * planet.vz

Time step velocity, according to force and mass
planet.vx += dt » Fx / planet.m
planet.vy += dt * Fy / planet.m
planet.vz += dt * Fz / planet.m

step_time (planet, time_span, n_steps):
"""Make a number of time steps forward """

dt = time_span / n_steps

for j in range(n_steps):
single_step (planet, dt)

* Cython’s aim — a superset of Python
* Gets rid of interpreter overhead!

This is usually only a small gain. (Boxing, etc. are still there...)

4.4.

My first Cython program

11

Cython tutorial, Release 2011

4.5 Compiling the Cython program

setup.py

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup (
cmdclass = {’build_ext’: build_ext},
ext_modules = [
Extension("gravity_cy",
["gravity_cy.pyx"],
)I
1)

$ python setup.py build

or

$ python setup.py build_ext -i # <- so it’s importable from same dir

4.6 Type declarations

* Syntax

def some_function (some_type some_parameter) :

cdef another_ type variable

* Restrict types of variables and arguments

* Gets rid of boxes! (Drawback: no duck-typing)

gravity.py

def step_time (planet,
time_span,
n_steps):
dt = time_span / n_steps

for j in range(n_steps):
single_step (planet, dt)

gravity_cy.pyx

def step_time (planet,
double time_span,
int n_steps):
cdef double dt

12 Chapter 4. Regaining speed with Cython

Cython tutorial, Release 2011

cdef int

dt = time_span / n_steps

]

for j in range(n_steps):
single_step (planet,

dt)

4.7 Cython annotated output

e Where is the overhead? Did I miss something?

¢ Demo:

cython —-a gravity_cy.pyx

4.8 Type declarations for classes

* Restrict types of member variables (and methods)

e Again: less boxes! (In Cython code...)

gravity.py

class Planet (object) :

def _ init_ (self):

some initial position and velocity

self.

self

self.

self
self

self.

x = 1.0
.y = 0.0
z = 0.0
.vx = 0.0
.vy = 0.5
vz = 0.0

some mass

self.

gravity_cy.pyx

cdef class Planet (object):
cdef public double x,

def _ init_ (self):

m= 1.0

Yo

Zy

VX,

VY

vz,

m

some initial position and velocity

self
self

self.

self
self
self

.x = 1.0
.y = 0.0
z = 0.0
.vx = 0.0
.vy = 0.5
.vz = 0.0

4.7. Cython annotated output

13

Cython tutorial, Release 2011

some mass
self.m = 1.0

e public: make the member variable accessible from Python

4.9 Function declarations

* Remove Python-specific function call overhead (when calling from Cython)
* Syntax

def some_function(int a, int b):
"""Callable from Cython & Python"""

cdef some_function(int a, int b):
"""Callable from Cython only (but optimized)"""

cpdef some_function(int a, int b):
""rcallable from Cython (optimized) & Python (not optimized)"""

gravity.py

def single_step(planet, dt):
"""Make a single time step"""

gravity_cy.pyx

cdef void single_step(Planet planet,
double dt) :

4.10 Interfacing with C
* We can use the C standard library to do some of the calculations

gravity.py

from math import sqgrt

gravity_cy.pyx

cdef extern from "math.h":
double sqgrt (double x)

14 Chapter 4. Regaining speed with Cython

Cython tutorial, Release 2011

4.11 Giving up some of Python

* Divide by zero raises an exception = Needs more checks (slower) & the GIL

¢ Instruct Cython to use the C semantics for division:

gravity.py

def single_step(planet, dt):
"""Make a single time step"""
cdef float x, y

x =0
= 1/x

~
|

gravity_cy.pyx

cimport cython

@cython.cdivision (True)
cdef void single_step(Planet planet,

double dt) :
cdef float x, vy
x =0
y = 1/x # No exception!

4.12 Releasing the GIL

* Overcome issues with multithreading: release the GIL in Cython

* Without GIL, you cannot do anything that messes with Python boxes (!!)

Raising exceptions, calling Python functions, touching non-cdef class attributes, ...

gravity_cy.pyx

cimport cython

cdef extern from "math.h":
double sqgrt (double x) nogil

@cython.cdivision (True)
cdef void single_step(Planet planet,
double dt) nogil:

def step_time (Planet planet, double time_span, int n_steps):

mmon

Make a number of time steps forward

4.11. Giving up some of Python

15

Cython tutorial, Release 2011

mon

cdef double dt
cdef int j

dt = time_span / n_steps
with nogil:
for j in range(n_steps):

single_step (planet, dt)

e Demo: does it help?

4.13 Summary

So yes, we have
* Eliminated boxing via cdef some_type & cdef class &etal.

¢ Eliminated function call overhead via cdef some_function

Called C functions with cdef extern from
* Eliminated GIL with nogil, to run multiple threads

¢ Demo.

4.14 Oh snap!

e ... all this and we gained a lousy factor of 10x ??

__pyx_v_distance = sqrt (((pow(___pyx_v_planet->x, 2.0)
+ pow(__pyx_v_planet—->y, 2.0))
+ pow (__pyx_v_planet->z, 2.0)));

* That pesky pow (it’s slow)!
* Tell the C compiler to work harder (and that we don’t care anymore):

$ OPT="-03 —-ffast-math" python setup.py build_ext -i

e 30x, looks better

16 Chapter 4. Regaining speed with Cython

CHAPTER
FIVE

NUMPY ARRAYS IN CYTHON

5.1 Basics

e Cython supports Numpy arrays!
» Usage:

import numpy as np
cimport numpy as np

cdef np.ndarray[np.double_t, ndim=2] some_array

some_array = np.zeros((50, 50), dtype=np.double)

5.2 Data types

» Note: data type needs to be declared:

cdef np.ndarray[np.double_t, ndim=2] some_array

¢ Mapping:
Numpy Cython
np.int8 np.int8_t
np.int16 np.int16_t
np.single np.float_t (same as float32)
np.double np.double_t (same as float64)
np.complex | np.complex_t

5.3 What is faster

* Only indexing (at the moment):

some_array[i, 7]

17

Cython tutorial, Release 2011

* Number of dimensions and data type needed in advance:

cdef np.ndarray[np.double_t, ndim=2] some_array

* Broadcasting, slicing, fancy indexing: the usual Numpy speed
Check your cython -a

¢ Demo.

5.4 Accessing the raw data

 The library you want to use only deals with double *?
* The raw data buffer can be obtained:

np.ndarray[np.double_t, ndim=1] some_array
cdef double xdata

some_array = np.zeros((20,), dtype=np.double)
data = <doublex>some_array.data

data[0] # the first element —-- or maybe not (depends on strides!)

¢ Remember to do:

if not some_array.flags.c_contiguous:
raise ValueError ("Only C-contiguous arrays are supported!")

5.5 Turning off more Python

¢ Sure your code works? Turn off bounds checking!

cimport cython
@cython.boundscheck (False)
def some_function(...):

* A real reason for doing this: using nogil

(Without GIL, out-of-bounds exceptions cannot be raised.)

18 Chapter 5. Numpy arrays in Cython

CHAPTER
SIX

USEFUL STUFF TO KNOW

6.1 Profiling Cython code

Requires a recent Cython version (here we have 0.15)
* Add this to the top:

cython: profile=True

Extract (function-level only) profile:

import pstats, cProfile
import run_gravity

cProfile.runctx ("run_gravity.main ()", globals (), locals(), "profile.prof")
s = pstats.Stats("Profile.prof")
s.strip_dirs() .sort_stats("time") .print_stats()

e Or:

kernprof.py run_gravity

python -m pstats run_gravity.py.prof
% strip

% sort time

stats 20

oe

e Or:

In [10]: %prun some_code.py

¢ Demo.

6.2 Exceptions in cdef functions

cdef int foo():
raise ValueError ("error!")

If you know Python C API, you see a problem:
 Python C API functions return a NULL instead of a PyObject, on exception

* But foo returns an int —how can it indicate an exception?

19

Cython tutorial, Release 2011

cdef int foo() except -1:
if something:
return 0 # but #neverx -1
raise ValueError ("error!")

cdef int foo() except? -1:
if something:
return -1 # or anything
raise ValueError ("error!")

cdef int foo() except x*:
raise ValueError ("error!")

6.3 More on compilation
Include files et cetera

from distutils.core import setup

from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy

setup (
cmdclass = {’build_ext’: build_ext},
ext_modules = [
Extension("gravity_cy",
["gravity_cy.pyx"],
include_dirs=[numpy.get_includes ()],
libraries=["m"],

Magic!

import pyximport
pyximport.install ()

import gravity_cy

6.4 Python-compatible syntax

import cython

@cython.locals (x=cython.double, y=cython.double)
def func(x):

y = x + 5

return y

20 Chapter 6. Useful stuff to know

Cython tutorial, Release 2011

6.5 And more

* See http://docs.cython.org/

¢ Exercises

6.5. And more 21

http://docs.cython.org/

Cython tutorial, Release 2011

22 Chapter 6. Useful stuff to know

CHAPTER
SEVEN

EXERCISES

7.1 Exercise 1: Cythonization

Study the provided fractal . py for computing the Newton fractal. Determine (by timing, profiling, or just guessing)
which part is the bottleneck and decide which part is worthwhile to convert to Cython. Do the conversion and add
necessary type declarations etc.

How large a speedup do you get?

Note: Protips: Cython defines Numpy’s complex type as np.complex_t. It is not directly compatible with
Cython’s C-level complex type cdef double complex, so to assign one to the other, you need todo a.real =
b.real; a.imag = b.imag.

Remember also @cython.cdivision and others.

Before profiling, comment out plotting commands.

7.2 Exercise 2: Wrapping C

Part 1

In directory wrapping is a simple C library computing the sin elementwise for a Numpy array. The header
stuff.h defines a function with the signature:

void compute (int n, double *input, double xoutput)

which takes two C arrays of doubles containing n doubles.
Write a Cython wrapper:

def do_compute (input_array) :
return output_array

for this function.

You can address the double x data contained in a Numpy array via the . data attribute of the corresponding cde f-ed
variable. (Remember to check . flags.c_contiguous!)

23

Cython tutorial, Release 2011

Part 2 (only do at the end if you have time)

In the directory wrapping?2 is an old library written in C that generates anagrams from words. Write a Cython
wrapper for it; this requires some string and resource handling.

The only thing you need to know about the C library is that its interface consists of two C functions:

charx simple_anagram(char xdictfile, char *word, int index)
void simple_anagram_free (char xdata)

Usage is as follows:

1. Call simple_anagram with the name of a dictionary file, a word you want to generate anagrams for, and the
number of the anagram you want to generate (starts with 0).

2. If there is an anagram corresponding to the number, it returns a C string containing the anagram. Otherwise,
you get NULL.

3. You will need to free the returned C string by calling simple_anagram_free onit.

Note: Handling allocatable resources in C needs more care than in Python. In Cython, you can create a Python string
copy of a C string by assigning it to a variable declared to be of type cdef object.

7.3 Exercise 3: Conway’s Game of Life

The Game of Life is a well-known cellular automaton, whose behavior is interesting in many ways. It is defined on a
grid of cells, where each cell has 8 neighbors:

The update rule to get a new state from the old one is:
¢ Cells with with less than 2 or more than 3 live neighbors die.
* Cell with exactly 3 live neighbors becomes alive.

Write a Cython function 1ife_update (old_state, new_state) that takes an N x N Numpy array old_state
of type int8 containing the old state, and writes the new state to a similar array new_state. Just use four nested
for-loops, but remember to add type declarations.

Some image file containing well-know interesting shapes are supplied (use matplotlib.pyplot.imread toread
them into Numpy arrays). Assign them at the center of a big grid, and see what happens!

* glider.png: the glider

* glider_gun.png: the Gosper glider gun
¢ breeder.png: one sort of a breeder

e ... and others!

These examples come from the very interesting Game of Life simulator Golly.

24 Chapter 7. Exercises

http://golly.sf.net/

Cython tutorial, Release 2011

Animation in Matplotlib
For visualization, a quick-and-dirty way is to show an animation with Matplotlib. Like so:

import matplotlib.pyplot as plt
import time
from life import life_update # <-- comes from your Cython module

put some starting image into state 1
state_1 = ...
state_2 = np.zeros_like(state_1)

Prepare animation
pixel_size = 2

plt.ion()

fig = plt.figure(dpi=50, figsize=(pixel_size * state_1.shape[l]/50.,
pixel_size * state_2.shape([0]/50.))

plt.axes ([0, 0, 1, 1])

img = plt.imshow(state_1, interpolation=’nearest’)

plt.gray()

print "Press Ctrl-C in the terminal to exit..."

Animate
try:
while True:
life_update (state_1, state_2)
state_1, state_2 = state_2, state_1 # swap buffers
img.set_data (state_1)
plt.draw()
time.sleep (0.01)
except KeyboardInterrupt:
pass

7.4 Exercise 4: On better algorithms...

Sometimes, the right solution is to (also) use a better algorithm.

Take the gravity example, and in the time step function interchange the order of position and velocity updates.
This transforms the algorithm (Euler method) to a more appropriate one (the symplectic Euler method). Check what
happens to the “exploding orbits” problem when the number of time steps is decreased.

7.4. Exercise 4: On better algorithms... 25

	The Quest for Speed: Cython
	Know the grounds
	A question
	Who do you call?
	Cython
	Cython is used by...

	What's there to optimize?
	Starting point
	Boxing
	Numpy performance
	Function calls
	Global Interpreter Lock

	Regaining speed with Cython
	The Plan
	Example problem: Planet in orbit
	Measure first
	My first Cython program
	Compiling the Cython program
	Type declarations
	Cython annotated output
	Type declarations for classes
	Function declarations
	Interfacing with C
	Giving up some of Python
	Releasing the GIL
	Summary
	Oh snap!

	Numpy arrays in Cython
	Basics
	Data types
	What is faster
	Accessing the raw data
	Turning off more Python

	Useful stuff to know
	Profiling Cython code
	Exceptions in cdef functions
	More on compilation
	Python-compatible syntax
	And more

	Exercises
	Exercise 1: Cythonization
	Exercise 2: Wrapping C
	Exercise 3: Conway's Game of Life
	Exercise 4: On better algorithms...

