
Best Practices, Development Methodologies,
and the Zen of Python

Valentin Haenel
valentin@haenel.co

Technische Universität Berlin
Bernstein Center for Computational Neuroscience Berlin

Python Summer School St Andrews, September 2011

Version: 2011-09-StAndrews https://github.com/esc/best-practices-talk
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

1 / 76

https://github.com/esc/best-practices-talk


Introduction

Many scientists write code regularly but few have formally been
trained to do so

Best practices evolved from programmer’s folk wisdom
They increase productivity and decrease stress

Development methodologies, such as Agile Programming and Test
Driven Development, are established in the software engineering
industry
We can learn a lot from them to improve our coding skills

When programming in Python: Always bear in mind the
Zen of Python

2 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

3 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

4 / 76



Coding Style

Readability counts
Explicit is better than implicit
Beautiful is better than ugly

Give your variables intention revealing names
For example: numbers instead of nu
For example: numbers instead of list_of_float_numbers
See also: Ottingers Rules for Naming

Example
def my_product(numbers):

""" Compute the product of a sequence of numbers. """
total = 1
for item in numbers:

total *= item
return total

5 / 76

http://tottinge.blogsome.com/meaningfulnames/


Formatting Code

Format code to coding conventions
for example: PEP-8
OR use a consistent style (especially when collaborating)
Conventions Specify:

variable naming convention
Indentation
import
maximum line length
blank lines, whitespace, comments

Use automated tools to check adherence (aka static checking):
pylint
pycheker
pep8
pyflakes

6 / 76

http://www.python.org/dev/peps/pep-0008/
http://www.logilab.org/857
http://pychecker.sourceforge.net/
https://github.com/jcrocholl/pep8/
https://launchpad.net/pyflakes


Documenting Code

Minimum requirement: at least a single line docstring
Not only for others, but also for yourself!
Serves as on-line help in the interpreter

Document arguments and return objects, including types
Use the numpy docstring conventions

Use tools to automatically generate website from docstrings
epydoc
sphinx

For complex algorithms, document every line, and include equations
in docstring

When your project gets bigger: provide a how-to or quick-start on
your website

7 / 76

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
http://epydoc.sourceforge.net/
http://sphinx.pocoo.org/


Example Docstring

def my_product(numbers):
""" Compute the product of a sequence of numbers.

Parameters
----------
numbers : sequence

list of numbers to multiply

Returns
-------
product : number

the final product

Raises
------
TypeError

if argument is not a sequence or sequence contains
types that can’t be multiplied

"""

8 / 76



Example Autogenerated Website

9 / 76



Using Exceptions

Use the try except statments to detect anomalous behaviour:

Example
try:

my_product([’abc’, 1])
except TypeError:

print "’my_product’ failed due to a ’TypeError’"

Allow you to recover or fail gracefully

Resist the tempation to use special return values
(-1, False, None)

Errors should never pass silently...
Unless explicitly silenced

10 / 76



Appropriate Exceptions

Python has a built-in Exception hierarchy
These will suit your needs most of the time, If not, subclass them

Exception
+-- StandardError

+-- ArithmeticError
+-- FloatingPointError
+-- OverflowError
+-- ZeroDivision

+-- AssertionError
+-- IndexError
+-- TypeError
+-- ValueError

11 / 76

http://docs.python.org/library/exceptions.html


import Pitfalls

Don’t use the star import: import *
Code is hard to read
Modules may overwrite each other
You will import everything in a module
...unless you are using the interpreter interactively

Put all imports at the beginning of the file...
unless you have a very good reason to do otherwise

12 / 76



import foobar as fb VS from foo import bar

Example
import my_product as mp
mp.my_product([1,2,3])

+ origin of my_product known
– slightly more to type
– fails only on call (late)

Example
from my_product import my_product
my_product([1,2,3])

+ slightly less to type
+ fails on import (early)
– must look at import for origin

13 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

14 / 76



Write and Run Unit Tests

We wish to automate testing of our software

Instead of testing the whole system we test units

Definition of a Unit
The smallest testable piece of code
Example: my_product

15 / 76



Available Packages

In python we have several packages available:
unittest
nosetest
py.test

Tests increase the confidence that your code works correctly, not only
for yourself but also for your reviewers
Tests are the only way to trust your code
It might take you a while to get used to writing them, but it will pay
off quite rapidly

16 / 76

http://docs.python.org/library/unittest.html
http://somethingaboutorange.com/mrl/projects/nose/0.11.2/
http://codespeak.net/py/dist/test/


Example Unit-Tests

Example
import nose.tools as nt
from my_product import my_product

def test_my_product():
""" Test my_product() on simple case. """
nt.assert_equal(my_product([1, 2, 3]), 6)

def test_raise_type_error():
""" Test that my_product raises a type error. """
nt.assert_raises(TypeError, my_product, [’abc’, 1, 2, 3])

17 / 76



Running the Tests

zsh» nosetests
.F
======================================================================
FAIL: Test that my_product raises a type error.
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/lib/pymodules/python2.6/nose/case.py", line 183, in runTest

self.test(*self.arg)
File "/home/valentin/git-working/best-practices-talk/\

code/my_product_test.py", line 10, in test_raise_type_error
nt.assert_raises(TypeError, my_product, [’abc’, 1, 2, 3])

AssertionError: TypeError not raised

----------------------------------------------------------------------
Ran 2 tests in 0.011s

FAILED (failures=1)

18 / 76



Whats going on?

>>> my_product([’abc’, 1, 2, 3])
’abcabcabcabcabcabc’

19 / 76



A Sneak Preview of Test-Driven Development (TDD)

from numbers import Number

def my_product(numbers):
""" Compute the product of a sequence of numbers. """
total = 1
for item in numbers:

if not isinstance(item, Number):
raise TypeError("%r unsupported by ’my_product’"

%type(item))
total *= item

return total

20 / 76



But make sure that it works!

Example
from my_product_fixed import my_product

zsh» nosetests my_product_fixed_test.py
..
----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK

21 / 76



Goals and Benefits

Goals
check code works
check design works
catch regression

Benefits
Easier to test the whole, if the units work
Can modify parts, and be sure the rest still works
Provide examples of how to use code

22 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

23 / 76



Motivation to use Version Control

Problem 1
"Help! my code worked yesterday, but I can’t recall what I changed."

Version control is a method to track and retrieve modifications in
source code

Problem 2
"We would like to work together, but we don’t know how!"

Concurrent editing by several developers is possible via merging

24 / 76



Features

Checkpoint significant improvements, for example releases

Document developer effort
Who changed what, when and why?

Use version control for anything that’s text
Code
Thesis/Papers
Letters

Easy collaboration across the globe

25 / 76



Vocabulary

Modifications to code are called commits
Commits are stored in a repository
Adding commits is called commiting

26 / 76



Centralised Version Control

All developers connect to a single resource over the network
Any interaction (history, previous versions, committing) require
network access

Example systems: Subversion (svn), Concurrent Version System (cvs)

27 / 76

http://subversion.tigris.org/
http://www.cvshome.org/


Distributed Version Control

Several copies of the repository may exist all over the place
Network access only required when synchronising repositories
Much more flexible than centralised
Widely regarded as state-of-the-art
Example systems: git, Mercurial (hg), Bazaar (bzr)

28 / 76

http://git-scm.com/
http://mercurial.selenic.com/
http://wiki.bazaar.canonical.com/DataStructures


Distributed like Centralised

... except that each developer has a complete copy of the entire
repository

29 / 76



Distributed Supports any Workflow :-)

30 / 76



What we will use...

More tomorrow...

31 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

32 / 76



Refactor Continuously

As a program evolves it may become necessary to rethink earlier
decisions and adapt the code accordingly

Re-organisation of your code without changing its function
Increase modularity by breaking large code blocks apart
Rename and restructure code to increase readability and reveal
intention

Always refactor one step at a time, and use the tests to check code
still works
Learn how to use automatic refactoring tools to make your life easier

For example: ropeide

Now is better than never
Although never is often better than right now

33 / 76

http://rope.sourceforge.net/ropeide.html


Common Refactoring Operations

Rename class/method/module/package/function
Move class/method/module/package/function
Encapsulate code in method/function
Change method/function signature
Organize imports (remove unused and sort)

Generally you will improve the readability and modularity of your code
Usually refactoring will reduce the lines of code

34 / 76



Refactoring Example

def my_func(numbers):
""" Difference between sum and product of sequence. """
total = 1
for item in numbers:

total *= item
total2 = 0
for item in numbers:

total2 += item
return total - total2

35 / 76



Split into functions, and use built-ins

from my_product import my_product

def my_func(numbers):
""" Difference between sum and product of sequence. """
product_value = my_product(numbers)
sum_value = sum(numbers)
return product_value - sum_value

36 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

37 / 76



Do not Repeat Yourself (DRY Principle)

When developing software, avoid duplication
Not just lines code, but knowledge of all sorts
Do not express the same piece of knowledge in two places
If you need to update this knowledge you will have to update it
everywhere

Its not a question of how this may fail, but instead a question of when

Categories of Duplication:
Imposed Duplication
Inadvertent Duplication
Impatient Duplication
Interdeveloper Duplication

If you detect duplication in code thats already written, refactor
mercilessly!

38 / 76



Imposed Duplication

When duplication seems to be forced on us
We feel like there is no other solution
The environment or programming language seems to require
duplication

Example
Duplication of a program version number in:

Source code
Website
Licence
README
Distribution package

Result: Increasing version number consistently becomes difficult

39 / 76



Inadvertent Duplication

When duplication happens by accident
You don’t realize that you are repeating yourself

Example
Variable name: list_of_numbers instead of just numbers

Type information duplicated in variable name
What happens if the set of possible types grows or shrinks?
Side effect: Type information incorrect, function may operate on any
sequence such as tuples

40 / 76



Impatient Duplication

Duplication due to sheer laziness
Reasons:

End-of-day
Deadline
Insert excuse here

Example
Copy-and-paste a snippet, instead of refactoring it into a function
What happens if the original code contains a bug?
What happens if the original code needs to be changed?

By far the easiest category to avoid, but requires discipline and
willingness
Be patient, invest time now to save time later! (especially when
facing oh so important deadlines)

41 / 76



Interdeveloper Duplication

Repeated implementation by more than one developer
Usually concerns utility methods
Often caused by lack of communication
Or lack of a module to contain utilities
Or lack of library knowledge

42 / 76



Interdeveloper Duplication Example

Product function may already exist in some library
(Though I admit this may also be classified as impatient duplication)

Example
import numpy

def my_product_refactor(numbers):
""" Compute the product of a sequence of numbers. """
return numpy.prod(numbers)

43 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

44 / 76



Keep it Simple (Stupid) (KIS(S) Principle)

Resist the urge to over-engineer
Write only what you need now

Simple is better than complex
Complex is better than complicated

Special cases aren’t special enough to break the rules
Although practicality beats purity

45 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

46 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

47 / 76



What is a Development Methodology?

Consists of:
A philosophy that governs the style and approach towards
development
A set of tools and models to support that particular approach

Help answer the following questions:
How far ahead should I plan?
What should I prioritize?
When do I write tests and documentation?

48 / 76



Scenarios

Lone student/scientist

Small team of scientists, working on a common library
Speed of development more important than execution speed

Often need to try out different ideas quickly:
rapid prototyping of a proposed algorithm
re-use/modify existing code

49 / 76



An Example: The Waterfall Model, Royce 1970

Sequential software development process
Originates in the manufacturing and construction industries
Rigid, inflexible model—focusing on one stage at a time

50 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

51 / 76



Agile Methods

Agile methods emerged during the late 90’s
Generic name for set of more specific paradigms
Set of best practices

Particularly suited for:
Small teams (Fewer than 10 people)
Unpredictable or rapidly changing requirements

52 / 76



Prominent Features of Agile methods

Minimal planning, small development iterations

Design/implement/test on a modular level

Rely heavily on testing

Promote collaboration and teamwork, including frequent input from
customer/boss/professor

Very adaptive, since nothing is set in stone

53 / 76



The Agile Spiral

54 / 76



Agile methods

55 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

56 / 76



Test Driven Development (TDD)

Define unit tests first!
Develop one unit at a time!

57 / 76



Benefits of TDD

Encourages simple designs and inspires confidence

No one ever forgets to write the unit tests

Helps you design a good API, since you are forced to use it when
testing (dog fooding)

Perhaps you may want to even write the documentation first?

58 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

59 / 76



Dealing with Bugs — The Agile Way

Write a unit test to expose the bug

Isolate the bug using a debugger

Fix the code, and ensure the test passes

Use the test to catch the bug should it reappear

Debugger
A program to run your code one step at a time, and giving you the
ability to inspect the current state
For example:

pdb
winpdb
pudb
pydb|pydbgr

60 / 76

http://docs.python.org/library/pdb.html
http://winpdb.org/
http://pypi.python.org/pypi/pudb
http://bashdb.sourceforge.net/pydb/
http://code.google.com/p/pydbgr/


Dealing with Bugs?

61 / 76



Design by Contract

Functions carry their specifications around with them:
Keeping specification and implementation together makes both easier
to understand
...and improves the odds that programmers will keep them in sync

A function is defined by:
pre-conditions: what must be true in order for it to work correctly
post-conditions: what it guarantees will be true if pre-conditions are
met

Pre- and post-conditions constrain how the function can evolve:
can only ever relax pre-conditions (i.e., take a wider range of input)...
...or tighten post-conditions (i.e., produce a narrower range of output)
tightening pre-conditions, or relaxing post-conditions, would violate the
function’s contract with its callers

62 / 76



Defensive Programming

Specify pre- and post-conditions using assertion:
assert len(numbers) > 0
raise AssertionError

Use assertions liberally
Program as if the rest of the world is out to get you!
Fail early, fail often, fail better!
The less distance there is between the error and you detecting it, the
easier it will be to find and fix
It’s never too late to do it right

Every time you fix a bug, put in an assertion and a comment
If you made the error, the right code can’t be obvious
You should protect yourself against someone “simplifying” the bug
back in

63 / 76



Pair Programming

Two developers, one computer
Two roles: driver and navigator
Driver sits at keyboard

Can focus on the tactical aspects
See only the “road” ahead

Navigator observes and instructs
Can concentrate on the “map”
Pay attention to the big picture

Switch roles every so often!

In a team: switch pairs every so often!

64 / 76



Pair Programming — Benefits

Knowledge is shared:
Specifics of the system
Tool usage (editor, interpreter, debugger, version control)
Coding style, idioms, knowledge of library

Less likely to:
Surf the web, read personal email
Be interrupted by others
Cheat themselves (being impatient, taking shortcuts)

Pairs produce code which:1
Is shorter
Incorporates better designs
Contains fewer defects

1Cockburn, Alistair, Williams, Laurie (2000). The Costs and Benefits of Pair
Programming

65 / 76

http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF


Optimization for Speed — My Point of View

Readable code is usually better than fast code
Programmer/Scientist time is more valuable than computer time
Don’t optimize early, ensure code works, has tests and is documented
before starting to optimize
Only optimize if it is absolutely necessary
Only optimize your bottlenecks
...and identify these using a profiler

66 / 76



Profilers and Viewers

Profiler
A tool to measure and provide statistics on the execution of code.

timeit
cProfile
line profiler

Viewer
Viewers display the profiler output, usually a call-graph

gprof2dot
run snake run
kcachegrind

67 / 76

http://docs.python.org/library/timeit.html
http://docs.python.org/library/profile.html
http://packages.python.org/line_profiler/
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://www.vrplumber.com/programming/runsnakerun/
http://kcachegrind.sourceforge.net/html/Home.html


Quick Example

Call the Profiler
zsh» python -m cProfile -o profile-stats \

./wiki2beamer-0.9.2 slides.wiki > /dev/null

Generate the Call-Graph
zsh» gprof2dot.py -f pstats profile-stats |

dot -Tpdf -o profile_stats.svg

68 / 76



Call-Graph

wiki2beamer-0.9:853:read_file_to_lines
1.34%

(0.01%)
1×

wiki2beamer-0.9:826:joinLines
1.30%

(0.57%)
1×

1.30%
1×

wiki2beamer-0.9:816:get_codemode
0.57%

(0.33%)
1612×

0.27%
806×

wiki2beamer-0.9:805:get_nowikimode
0.80%

(0.41%)
1620×

0.30%
810×

wiki2beamer-0.9:346:transform_colors
2.77%

(0.34%)
807×

~:0:<built-in method sub>
47.54%

(32.38%)
21793×

1.73%
807×

re:188:compile
18.85%
(4.85%)
27439×

0.69%
807×

re:271:_subx
14.43%
(7.37%)
21789×

14.43%
21789×

re:277:filter
0.73%

(0.15%)
512×

0.73%
512×

re:229:_compile
14.00%
(8.50%)
27439×

14.00%
27439×

wiki2beamer-0.9:406:transform
89.14%
(2.93%)

807×

2.77%
807×

wiki2beamer-0.9:265:transform_replace_headfoot
0.52%

(0.27%)
807×

0.52%
807×

wiki2beamer-0.9:219:transform_h4_to_frame
8.95%

(1.01%)
807×

8.95%
807×

wiki2beamer-0.9:366:transform_substitutions
15.65%
(1.58%)

807×

15.65%
807×

wiki2beamer-0.9:388:transform_vspacestar
2.59%

(0.30%)
807×

2.59%
807×

wiki2beamer-0.9:288:transform_columns
2.57%

(0.29%)
807×

2.57%
807×

wiki2beamer-0.9:251:transform_h2_to_sec
5.91%

(0.64%)
807×

5.91%
807×

wiki2beamer-0.9:300:transform_italicfont
2.35%

(0.30%)
807×

2.35%
807×

wiki2beamer-0.9:352:transform_footnotes
2.38%

(0.31%)
807×

2.38%
807×

wiki2beamer-0.9:294:transform_boldfont
2.36%

(0.29%)
807×

2.36%
807×

wiki2beamer-0.9:400:transform_only
2.30%

(0.28%)
807×

2.30%
807×

wiki2beamer-0.9:358:transform_graphics
4.65%

(0.54%)
807×

4.65%
807×

wiki2beamer-0.9:382:transform_vspace
2.63%

(0.30%)
807×

2.63%
807×

wiki2beamer-0.9:394:transform_uncover
2.37%

(0.29%)
807×

2.37%
807×

wiki2beamer-0.9:236:transform_h3_to_subsec
6.06%

(0.66%)
807×

6.06%
807×

wiki2beamer-0.9:270:transform_environments
5.37%

(0.59%)
807×

5.37%
807×

wiki2beamer-0.9:338:transform_typewriterfont
4.75%

(0.21%)
807×

4.75%
807×

wiki2beamer-0.9:342:transform_alerts
4.31%

(0.19%)
807×

4.31%
807×

wiki2beamer-0.9:208:transform_detect_manual_frameclose
0.91%

(0.29%)
807×

0.91%
807×

wiki2beamer-0.9:147:transform_itemenums
4.94%

(1.08%)
807×

4.94%
807×

wiki2beamer-0.9:192:transform_define_foothead
1.86%

(0.57%)
807×

1.86%
807×

2.23%
807×

0.59%
807×

wiki2beamer-0.9:142:escape_resub
10.17%
(1.12%)
3228×

4.95%
1614×

wiki2beamer-0.9:216:get_frame_closing
0.55%

(0.55%)
2422×

0.15%
807×

10.88%
4842×

3.19%
4842×

1.73%
807×

0.56%
807×

1.73%
807×

0.55%
807×

1.90%
807×

0.59%
807×

2.58%
807×

0.20%
807×

1.52%
807×

0.53%
807×

1.53%
807×

0.54%
807×

1.53%
807×

0.54%
807×

1.47%
807×

0.55%
807×

3.02%
1614×

1.08%
1614×

1.77%
807×

0.56%
807×

1.52%
807×

0.56%
807×

1.96%
807×

0.60%
807×

2.64%
807×

0.20%
807×

3.63%
1614×

1.15%
1614×

wiki2beamer-0.9:306:_transform_mini_parser
8.67%

(6.65%)
1614×

4.54%
807×

4.12%
807×

0.48%
807×

~:0:<built-in method match>
2.00%

(2.00%)
10468×

0.14%
776×

2.28%
807×

1.10%
1614×

0.31%
807×

1.00%
1614×

0.29%
1614×

wiki2beamer-0.9:1045:main
95.99%
(0.01%)

1×

wiki2beamer-0.9:953:include_file_recursive
2.82%

(0.00%)
1×

2.82%
1×

wiki2beamer-0.9:922:convert2beamer
92.93%
(0.00%)

1×

92.93%
1×

wiki2beamer-0.9:956:recurse
2.82%

(0.34%)
1×

2.82%
1×

wiki2beamer-0.9:988:convert2beamer_full
92.62%
(0.89%)

1×

92.62%
1×

sre_compile:501:compile
2.71%

(0.06%)
36×

2.71%
36×

~:0:<method 'get' of 'dict' objects>
5.11%

(5.11%)
49402×

2.76%
27439×

sre_parse:669:parse
1.45%

(0.04%)
36×

1.45%
36×

sre_compile:486:_code
1.18%

(0.03%)
36×

1.18%
36×

0.23%
1612×

0.38%
1620×

sre_parse:207:get
0.58%

(0.18%)
956×

89.14%
807×

0.30%
806×

0.50%
810×

wiki2beamer-0.9:793:get_autotemplatemode
1.70%

(0.44%)
806×

1.70%
806×

1.09%
1612×

0.17%
806×

sre_parse:307:_parse_sub
1.35%

(0.08%)
79×

sre_parse:385:_parse
1.31%

(0.55%)
79×

1.31%
36×

0.29%
468×

0.43%
43×

sre_parse:697:parse_template
0.63%

(0.22%)
27×

0.28%
452×

sre_compile:38:_compile
0.72%

(0.36%)
140×

0.52%
73×

1.35%
36×

wiki2beamer-0.9:31:<module>
96.70%
(0.13%)

1×

0.31%
4×

95.99%
1×

~:0:<method 'append' of 'list' objects>
1.82%

(1.82%)
53789×

1.59%
49188×

0.22%
1618×

wiki2beamer-0.9:109:get_lines_from_cache
1.35%

(0.00%)
1×

1.35%
1×

wiki2beamer-0.9:937:include_file
0.88%

(0.23%)
805×

0.88%
805×

1.34%
1×

0.51%
805×

0.14%
805×

7.11%
3228×

1.94%
3228×

~:0:<execfile>
100.00%
(3.29%)

1×

96.70%
1×

<string>:1:<module>
100.00%
(0.00%)

1×

100.00%
1×

0.72%
36×

re:251:_compile_repl
6.88%

(3.91%)
21789×

6.88%
21789×

sre_parse:784:expand_template
0.58%

(0.46%)
512×

0.58%
512×

2.33%
21789×

0.63%
27×

69 / 76



Prototyping

Ever tried to hit a moving target?

If you are unsure how to implement something, write a prototype
Hack together a proof of concept quickly
No tests, no documentation, keep it simple (stupid)
Use this to explore the feasibility of your idea
When you are ready, scrap the prototype and start with the unit tests

In the face of ambiguity, refuse the temptation to guess

70 / 76



Quality Assurance

The techniques I have mentioned above help to assure high quality of
the software
Quality is not just testing:

Trying to improve the quality of software by doing more testing is like
trying to lose weight by weighing yourself more often

Quality is designed in (For example, by using the DRY and KISS
principles)
Quality is monitored and maintained through the whole software
lifecycle

71 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

72 / 76



The Zen of Python, an Excerpt

>>>import this
The Zen of Python, by Tim Peters

Explicit is better than implicit.
Readability counts.
Simple is better than complex.
Complex is better than complicated.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
Now is better than never.
Although never is often better than *right* now.

Beautiful is better than ugly.

73 / 76



Outline

1 Introduction
2 Best Practices

Style and Documentation
Unit Tests
Version Control
Refactoring
Do not Repeat Yourself
Keep it Simple

3 Development Methodologies
Definition and Motivation
Agile Methods
Test Driven Development
Additional techniques

4 Zen of Python
5 Conclusion

74 / 76



Results

Every scientific result (especially if important) should be
independently reproduced at least internally before publication.
(German Research Council 1999)

Increasing pressure to make the source code (and data?) used in
publications available

With unit tested code you need not be embarrassed to publish your
code

Using version control allows you to share and collaborate easily

In this day and age there is absolutely no excuse to not use them!

If you can afford it, hire a developer :-)
75 / 76



The Last Slide

Slides based on:
Material by Pietro Berkes and Tiziano Zito
The Pragmatic Programmer by Hunt and Thomas,
The Course on Software Carpentry by Greg Wilson

Open source tools used to make this presentation:
Wiki2beamer
LATEXbeamer
Dia
Pygments
Minted
Solarized theme for pygments

Questions ?

https://github.com/esc/best-practices-talk

76 / 76

http://pragprog.com/titles/tpp/the-pragmatic-programmer
http://software-carpentry.org/
http://www-user.tu-chemnitz.de/~mren/wiki2beamer/doku.php
http://latex-beamer.sourceforge.net/
http://projects.gnome.org/dia/
http://pygments.org/
http://code.google.com/p/minted/
https://bitbucket.org/john2x/solarized-pygment
https://github.com/esc/best-practices-talk

	Introduction
	Best Practices
	Style and Documentation
	Unit Tests
	Version Control
	Refactoring
	Do not Repeat Yourself
	Keep it Simple

	Development Methodologies
	Definition and Motivation
	Agile Methods
	Test Driven Development
	Additional techniques

	Zen of Python
	Conclusion

