
Advanced Python — exercises

Exercise D1 (30 min)

Write a decorator which wraps functions to log function arguments and the return value on each call.
Provide support for both positional and named arguments (your wrapper function should take both
*args and **kwargs and print them both):

>>> @logged

... def func(*args):

... return 3 + len(args)

>>> func(4, 4, 4)

you called func(4, 4, 4)

it returned 6

6

Exercise D2 (20 min)

Write a decorator to cache function invocation results. Store pairs arg:result in a dictionary in an
attribute of the function object. The function being memoized is:

def fibonacci(n):

assert n >= 0

if n < 2:

return n

else:

return fibonacci(n-1) + fibonacci(n-2)

Exercise G1 (10 min)

Write a generator function which returns a few values. Launch it. Retrieve a value using next (the
global function). Retrieve a value using next (a method of the generator object). Throw an exception
into the generator using throw (a method). Look at the traceback.

Exercise G2 (20 min)

You are writing a file browser which displays files line by line. The list of files is specified on the
commands line (in sys.argv). After displaying one line, the program waits for user input. The user
can:

• press Enter to display the next line

• press n + Enter to forget the rest of the current file and start with the next file

• or anything else + Enter to display the next line

1

The first part is already written: it is a function which displays the lines and queries the user for input.
Your job is to write the second part — the generator read_lines with the following interface: during
construction it is passed a list of files to read. If yields line after line from the first file, then from the
second file, and so on. When the last file is exhausted, it stops. The user of the generator can also
throw an exception into the generator (SkipThisFile) which signals the generator to skip the rest of
the current file, and just yield a dummy value to be skipped.

class SkipThisFile(Exception):

"Tells the generator to jump to the next file in list."

pass

def read_lines(*files):

"""this is the generator to be written

>>> list(read_lines(’exercises.rst’))[:2]

[’=============================’, ’Advanced Python -- exercises’]

"""

for file in files:

yield ’dummy line’

def display_files(*files):

source = read_lines(*files)

for line in source:

print(line, end=’’)

inp = input()

if inp == ’n’:

print(’NEXT’)

source.throw(SkipThisFile) # return value is ignored

Exercise M1 (45 min)

The following program writes lines to a file. When ran as a script it tries to add users (john666,
john667, ...) to the user database. It checks that the user name is unique and finds the uid one greater
than the previously highest one.

It has been written in a extra-security-concious way which also has the side advantage that it takes
quite a lot of time to generate the passphrase, which means that the program is good at exposing race
conditions. Unfortunately the author forgot about flushing and locking :(

First check that, indeed, when two instances of the program are run in parallel, the uniqueness con-
straints are violated.

open three terminals and run in two of them:

python add_user.py

and in the last one:

tail -f /tmp/passwd

Pretty soon you should see duplicate entries.

2

To fix the program

Lock the file with flock(2). What operations have to be protected to ensure correctness? Are the
changes to the file flushed to disk before unlocking?

Verify that the uniqueness constraints are now satisfied. (Don’t forget to truncate the file before testing
the new version of the program.)

If you press ˆC at a random moment, will the program always unlock the file?

The program is on the next page and is also available on the wiki page.

import crypt, random, itertools

class UserExists(Exception):

pass

john:G5yX9p18wFWC.:100:100:/home/john:/bin/sh

PASSWD_FILE = ’/tmp/passwd’

def add_user(login, sh=’/bin/sh’):

f = open(PASSWD_FILE, ’a+’)

f.seek(0)

find next free uid, verify login is unique

uid = 0

for line in f:

fields_ = line.split(’:’)

login_, uid_ = fields_[0], int(fields_[2])

if uid == uid_:

uid = uid_ + 1

if login_ == login:

raise UserExists(login)

phrase = ’’.join(gen_passwd(10))

hash = crypt.crypt(phrase[:-2], phrase[-2:])

print uid, login, phrase

home = ’/home/’ + login

fields = (login, hash, uid, uid, home, sh)

f.write(u’%s:%s:%d:%d:%s:%s\n’ % fields)

def gen_passwd(n):

symbols = ’ABCDEFGHIJKLMNOPQRSTVUWXYZabcdefghijklmnopqrstvuwxyz0123456789/.’

for i in xrange(n):

while True:

num = random.randrange(0, 1000000)

if num < 100:

yield random.choice(symbols)

break

if __name__ == ’__main__’:

for i in itertools.count(666):

try:

add_user(’john%d’%i)

except UserExists as e :

3

print ’user exists:’, e

Exercise D3: plugin registration system (5 min) [optional]

This exercise is to be done at the end if time permits.

This is the plugin registration system from the lecture:

class WordProcessor(object):

def process(self, text):

for plugin in self.PLUGINS:

text = plugin().cleanup(text)

return text

PLUGINS = []

...

@WordProcessor.plugin

class CleanMdashesExtension(object):

def cleanup(self, text):

return text.replace(’—’, u’\N{em dash}’)

. . . implement the plugin decorator!

Exercise D4 (30 min) [optional]

This exercise is to be done at the end if time permits.

Write a decorator to memoize functions with an arbitrary set of arguments. Memoization is only
possible if the arguments are hashable. If the wrapper is called with arguments which are not hashable,
then the wrapped function should just be called without caching.

Note: To use args and kwargs as dictionary keys, they must be hashable, which basically means that
they must be immutable. args is already a tuple, which is fine, but kwargs have to be converted.
One way is tuple(sorted(kwargs.items())).

Exercise D5 (15 min) [really optional]

Modify deprecated2 to take an optional argument — a function to call instead of the original function:

>>> def eot_new(): return ’EOT NEW’

>>> @deprecated3(’using eot_new not {func.__name__}’, eot_new)

... def eot(): return ’EOT’

>>> eot()

using eot_new not eot

’EOT NEW’

4

	Exercise D1 (30 min)
	Exercise D2 (20 min)
	Exercise G1 (10 min)
	Exercise G2 (20 min)
	Exercise M1 (45 min)
	To fix the program

	Exercise D3: plugin registration system (5 min) [optional]
	Exercise D4 (30 min) [optional]
	Exercise D5 (15 min) [really optional]

