
Advanced Scientific Programming in Python Summer School, Day 1

Lecturer: Pietro Berkes; Sep 12, 2011

Exercises: Software carpentry

Before you start: download the file day1_exercises.zip from
https://python.g-node.org/wiki/software_carpentry and unzip it in your repository.

Remember to commit every significant change to the git repository with a
meaningful message.

Exercise 1 – Writing a test suite [basic]
Goals:Write a test suite using the unittest module.

Write a test suite, test_center.py, that tests the function center in the module
string (http://docs.python.org/library/string.html#string.center). At each step,
run the tests and make sure they pass (insert a call to unittest.main() at the
end of the script as shown in the class).

In the suite, write three test cases:

a) The first case checks the functionality of the function, with the argument
fillchar set to its default value. Control that the function works as advertised
for

1. odd and even widths
2. a width smaller than the length of the string
3. an empty input string
4. a string containing spaces to either extremity

Test that the length of the returned string is correct and that it looks like you
expect it to. Hint: when the number of spaces to be added is odd, there are
two possible ways to center a string. The docstring does not specify which
one is correct, so you should test that the returned string is one or the other.

b) The second case checks the functionality of string.center, with fillchar
set to specific values. Test using a letter, a numerical value, and the default
value.

c) Finally, test that string.center raises a TypeError when fillchar is set
to an empty string or to a string longer than one character.

https://python.g-node.org/wiki/software_carpentry
http://docs.python.org/library/string.html#string.center

Exercise 2 – Testing with numpy and numerical fuzzing [basic]
Goals: Use the numpy.testing utility functions and numerical fuzzing techniques to
test numerical code.

Write a new test suite, test_multinomial.py, to test the function
numpy.random.multinomial (http://tinyurl.com/448f5dz).

a) Read the documentation and play with the function using ipython until you
are sure you understand how it works (always leave the size argument to its
default value).

b) Write a first test case, testing the function in deterministic cases:
1. when one of the entries has probability 1.0 and the others 0.0, the

returned samples must consist only of the entry with probability mass
2. when one of the entries has probability 0.0, it must not appear in the

returned samples
c) Write a numerical fuzzing test case that verifies that, with a large number of

samples, the sampling frequency of each entry is close to its probability.

Exercise 3 – Deceivingly simple function [intermediate]
Goals: General practice of debugging and unit testing using agile development techniques.

Enter the directory deceivingly_simple. The file maxima.py contains a
function, find_maxima , that finds local maxima in a list and returns their indices.

a) Run the example code in the docstring of the function using doctest, and
make sure they pass

b) Using ipython, test the function with these input arguments and others of
your own invention until you are satisfied that it does the right thing for
typical cases (remember that the function returns the indices of the maxima):
x = [0, 1, 2, 1, 2, 1, 0]

x = [-i**2 for i in range(-3, 4)]

x = [-numpy.sin(2*alpha)

 for alpha in numpy.linspace(0, 2*3.14, 100)]

c) Now try with the following inputs:
x = [4, 2, 1, 3, 1, 2]

x = [4, 2, 1, 3, 1, 5]

x = [4, 2, 1, 3, 1]

For each bug you find, solve it using the agile programming strategy:
i. Isolate the bug using a debugger
ii. Write a new test case that reproduces the bug. Try to make the test

case as simple as possible; here, this means using the simplest input
data that still triggers the bug

http://tinyurl.com/448f5dz

iii. Correct the code
iv. Make sure that all the tests pass

d) Run a coverage analysis on the tests; there should be at least one statement

that is not covered. Write a test that covers it and debug the code

e) You may think that the code is now clean and robust… Look at the output of
the function for the input list
x = [1, 2, 2, 1]

Does the output correspond to your intuition? Think about a reasonable
default behavior in this situation, and meditate about how such a simple
function can hide so many complications

f) (optional) Implement the “reasonable behavior” you conceived in e) and
document it in the docstring, adding a new doctest.
Make sure that your function handles these inputs correctly (include them in
the tests):
x = [1, 2, 2, 3, 1]

x = [1, 3, 2, 2, 1]

x = [3, 2, 2, 3]

Exercise 4 – The game Set® [advanced]
Goals: Write a solver for the game Set and optimize it until it flies

Set is a logic game consisting in a deck of cards that vary along 4 dimensions: color,
shape, texture, and number. For each dimensions, there are 3 possible features (e.g.,
there are 3 possible textures: full, empty, striped). A valid set is formed by three
cards that have on each dimension either the same feature, or three different
features. So for example in the image below, the first three cards are a valid set, as
they are different in all features across all dimensions; the second three cards also
form a valid set, because they share the same features for color and number, and are
different in shape and texture; the cards on the bottom are not a set, because two
cards have the “full” texture, while one is striped.

In the solitary version of the game, 12 random cards are put on the table, and the
player has to find as many valid sets as possible. To test that you understand the
rules, visit http://www.nytimes.com/ref/crosswords/setpuzzle.html and solve the
daily puzzle (but don’t get too distracted!). A longer description of the rules is
available at http://www.setgame.com/set/index.html .

In the code, we are going to represent each card by a 4-dimensional vector (for
color, shape, texture, and number); each element is either 0, 1, or 2, representing the
three possible features for each dimension. For example, two cards might be
represented as [2, 2, 0, 1] and [2, 0, 0, 0]; this means that they have
the same features for dimensions 0 and 2 and different features for dimensions 1
and 3.

Enter the directory set.

a) The test module test_set.py contains a test, test_is_set, for a
function that takes a list of cards and three indices and returns True if the
cards at those indices form a set. Implement is_set in set_solver.py .

b) The test module also contains a test for a solver that finds all possible sets in
a list of cards. Write a brute-force Set solver, find_sets: cycle through all
possible triplets and call is_set for each triplet. If it is a set, append the
indices of the cards to a list. Return the list.

c) The brute-force approach is brutally inefficient. Write a faster version,
find_sets_fast, using list comprehensions and the function
combinations from the module itertools
(http://docs.python.org/library/itertools.html). Test the new function using
fuzzing: generate random cards and test that the output of
find_sets_fast is the same of the brute force solver. (Use the function

random_cards in set_solver.py to generate random draws of cards.)

d) Use timeit to measure the increase in speed.

e) (optional) Given any two cards, there is one and only one card that makes
them form a valid set. Use this idea to write a much faster Set solver, and
measure its performance.

http://www.nytimes.com/ref/crosswords/setpuzzle.html
http://www.setgame.com/set/index.html
http://docs.python.org/library/itertools.html

Exercise 5 - Sudoku solver [advanced]
Goals: Use your new toolbox to develop a Sudoku solver!

Enter the directory sudoku. If you don’t know what Sudoku is (really?), have a look
at http://en.wikipedia.org/wiki/Sudoku .

a) Look at the test cases in test_sudoku.py . Write a module sudoku.py that

makes the tests pass (this is equivalent to writing a Sudoku solution verifier and a

Sudoku solver).

Some hints:

 The file problems.py contains two dictionaries with Sudoku boards and

their solutions. Each board is represented as a 2D list. Write three helper

functions, get_row(grid, nr), get_column(grid, nr), and

get_box(grid, nr), that return the nr-th row, column or box of the

Sudoku grid. These will come very handy. Make sure you write tests for the

new functions!

 Start by working on the Sudoku verifier, sudoku.is_solution .

 Use a brute-force approach to solve the Sudoku board in

sudoku.solve_sudoku:

o Start from the first empty cell in the grid

o Starting from 1, test all digits and check if they violate the constraints; if

not, proceed to the next empty cell

o If none of the digits is allowed in a given cell, leave it blank and go back

one cell, incrementing its value by one

o Continue until the whole grid is filled

More information about the brute force approach is available on Wikipedia

at http://tinyurl.com/mebxw4

b) Check that your code adheres to Python standards using pylint:
 pylint sudoku.py

Improve your code until the overall pylint score is greater than 7.0 .

c) Create documentation for your Sudoku solver:
 pydoc -w Sudoku

d) (optional) Profile your code on the hard2 problem. Save the profile results in

sudoku.profile . Examine the results and discuss what could be optimized

and how (write the response in optimize.txt)

http://en.wikipedia.org/wiki/Sudoku
http://tinyurl.com/mebxw4

