
Best practices in scientific programming

Software Carpentry, Part I

Pietro Berkes, Brandeis University

Outline

 Part I Agile development for scientists

 Good programming practices

 Test driven development, late optimization, refactoring

 This part is not specific to any programming language

 Part II Python tools

 Version control systems

 Testing, debugging, profiling

 Focus on standard, out-of-the box Python tools

Pietro Berkes, 9/1/20092 Software carpentry - Part I

Modern programming practices and science

 Many of us have to routinely write computer programs,

but few of us have been trained to do so

 Good programming practices can make a lot of difference

 Development methodologies have been introduced for

the development of commercial software, but we can

learn a lot from them about making science

Pietro Berkes, 9/1/20093 Software carpentry - Part I

Scenarios

 Lone scientist, coding up a model or data
analysis tool for a research project

 Small team of scientists, working on a
common library

 The bottleneck is developing speed, not
execution speed

 Need to try out different ideas:
rapid prototyping, re-use code,
identify common patterns and use
known solutions

Pietro Berkes, 9/1/20094 Software carpentry - Part I

Requirements for scientific programming

 Every scientific result (especially if important) should be

independently reproduced at least internally before

publication (DFG, 1999)

 Translation: there must be guarantees that the source code

works as advertised (testing frameworks, pair programming)

 Increasing pressure for making the source code used in

publications available online (especially for theoretical

papers)

 Translation: you shouldn’t be embarrassed of publishing your

code

 Your code must be readable and easily reusable

Pietro Berkes, 9/1/20095 Software carpentry - Part I

Agile development

 Generic name for set of more specific

paradigms, most influential

eXtreme Programming (XP), formulated

in the 90s by Kent Beck, Ward Cunningham, and Ron

Jeffries

 Set of good programming practices, from design of

software to development to maintenance

 Particularly suited for small teams (<10 people) facing

unpredictable or rapidly changing requirements

(sounds familiar?)

Pietro Berkes, 9/1/20096 Software carpentry - Part I

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

Pietro Berkes, 9/1/20097 Software carpentry - Part I

Planning

 Story-based planning

 Writing tests before actual code helps designing the

interface

 Use spike solutions to test approaches

(i.e., write a toy implementation / proof-of-concept)

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

Pietro Berkes, 9/1/20098 Software carpentry - Part I

Test-driven development

 Tests are crucial for modern programming. Tests become

part of the programming cycle and are automated

 Write test suite (collection of tests) in parallel with your

code

 External software runs the tests and provides reports and

statistics

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

Pietro Berkes, 9/1/20099 Software carpentry - Part I

Testing benefits

 Encourages better code and optimization: code can

change, and consistency is assured by tests

 Faster development:

 Bugs are always pinpointed

 Avoids starting all over again when fixing one part of the code

causes a bug somewhere else

 Installation check for users if you plan to

distribute your code

 To reviewers: “I know my code works,

because it passes these tests”

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

Pietro Berkes, 9/1/200910 Software carpentry - Part I

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

What to test and how

 Test with simple (but general) cases, using hard

coded solutions

 E.g., test that sum(2, 3) = 5

 Test general routines with specific ones

 E.g., test polyomial_expansion(data, degree)

with quadratic_expansion(data)

 Test special or boundary cases

 E.g., test has_prefix(string, pfx) for pfx=""

 Test that the code raises meaningful errors

when wrong data is passed

 Relevant when writing scientific libraries

Pietro Berkes, 9/1/200911 Software carpentry - Part I

Example: eigenvector decomposition

 Consider the function values, vectors = eigen(matrix)

 Test with simple but general cases:

 use full matrices for which you know the exact solution (from

a table or computed by hand)

 Test general routine with specific ones:

 use the analytical solution for 2x2 matrices

 Test with boundary cases:

 test with diagonal matrix (is the algorithm stable?)

 test with a singular matrix

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

Pietro Berkes, 9/1/200912 Software carpentry - Part I

“I’m writing a learning algorithm

/ probabilistic algorithm.

How can I possibly test it?”
Probabilistic becomes

deterministic with

lots of data or

disappearing noise

Think of simple,

artificial cases

Turn your

validation cases

into tests

Test all sub-parts

of the algorithm

Pietro Berkes, 9/1/200913 Software carpentry - Part I

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

Start simple

 Write small, testable chunks of code
 Write intention-revealing code

 Separate testable parts from main application

 Do not implement a general problem-solving
framework for a specific problem
 unnecessary features are not used but need

to be tested and maintained

 Do not try to write complex,
efficient code at this point

Pietro Berkes, 9/1/200914 Software carpentry - Part I

“The whole point of my

research is implementing an

efficient algorithm…”

The algorithm should

be efficient, not its

first implementation

Re-use standard

data types

Do not vectorize if

a for-loop will do

Do not use

optimization

tricks

Pietro Berkes, 9/1/200915 Software carpentry - Part I

Collaborating

 Pair programming

 One programmer sits at the computer and does the coding,

the other looks and keeps an eye on the big picture

 Pairs are fluid

 Code must be formatted to agreed coding standards

(Python: PEP8)

 Write intention-revealing code

(comments should be mostly not necessary)

 Keep your code documented (docstrings!)

 Use Version Control Systems to handle

shared code

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

Pietro Berkes, 9/1/200916 Software carpentry - Part I

How to handle bugs

1. Isolate the bug

 Test cases should already eliminate most possible causes

 Use a debugger, not print statements

2. Add a test that reproduces the bug to your test suite

3. Solve the bug

4. Run all tests and check that they pass

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

Pietro Berkes, 9/1/200917 Software carpentry - Part I

Optimization

 Usually, a small percentage of your code takes up most of

the time

1. Identify time-consuming parts of the code

(use a profiler)

2. Only optimize those parts of the code

3. Keep running the tests to make sure that code

is not broken
Write tests to check

your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

Pietro Berkes, 9/1/200918 Software carpentry - Part I

“When should I stop

optimizing?”

As soon as it’s

fast enough

When all the obvious

optimizations are

implemented

Consider also alternative forms

of optimization: running remotely

on a faster machine, having

multiple runs in parallel, ...

Pietro Berkes, 9/1/200919 Software carpentry - Part I

Adding new functionality

1. Implement new functionalities as in basic

development cycle

2. Refactor the code

 Re-organize your code without changing its function

 E.g., remove duplicated code, break down complex
functions in simpler parts, rename variables and functions
to make intention clearer

 Series of recipes for these common operations: how to
do them without breaking the code

 Do it in small steps, keep testing

 Many modern IDEs have refactoring tools

Pietro Berkes, 9/1/200920 Software carpentry - Part I

Final thoughts on Part I

 Do not underestimate these practices

 Adapt these techniques to your needs, but try to keep in

mind the basic principles

 Never stop testing

Pietro Berkes, 9/1/200921 Software carpentry - Part I

Pietro Berkes, 9/1/200922 Software carpentry - Part I

Pietro Berkes, 9/1/200923 Software carpentry - Part I

