Object Oriented Design

Niko Wilbert

G-Node Python Summer School 2009, Berlin

Overview

1. General Design Principles
2. Object Oriented Programming in Python
3. Object Oriented Design Principles

4. Design Patterns

General Design Principles

Disclaimer

Learning good software design is a never ending process,
these slides can only get you started.

What really counts is your motivation to improve and question your code.

Some parts of this talk are just teasers to get you interested ;-)

Good Software Design

The single two most important principles are probably:

KIS
Keep it simple.
Overengineering is a dangerous trap.
Scientists: think Ockham'’s razor...
DRY
Don't repeat yourself.
(Sure path to a maintenance nightmare.)

import this

Python has its own set of guidelines, just execute import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right * now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Code that follows this is often called “pythonic”.

Object Oriented Programming
(in Python)

WE'RE GOING TO
START THIS WEEK'S
SERMON WITH
A REVIEW OF
THE BASICS....

Object Orientated Programming (classic)

Objects
combine state (data) and behavior (algorithms).

Classes
define what is common for a whole class of objects.
“Snowy is a dog"’ =
“The Snowy object is an instance of the dog class.”
Define once how a dog works and then reuse it for all dogs.
Classes correspond to variable types (they are type objects).

Encapsulation
Objects decide what is exposed to the outside world (by their public
interface) and hide their implementation details to provide
abstraction.
The abstraction should not /eak implementation details.

Object Orientated Programming 2

Inheritance

“a dog (subclass) is @ mammal (parent/superclass)”

A subclass is derived from / inherits / extends a parent class.
It reuses and extends it, and it can override parts that need
specialization.

Liskov substitution principle: “What works for the Mammal class
should also work for the dog class”.

Polymorphism
Provide common way of usage for different classes, pick the correct
underlying behavior for a specific class.
Example: the + operator for real and complex numbers.

Python OO Basics

m All classes are derived from object (new-style classes).

class Dog(object):
pass

m Python classes / objects can have function attributes (methods) and
data attributes (called members in other languages).
“Attributes are whatever can be used with the dot-notation.”

class Dog(object):
def bark(self):
print "Wuff!"

snowy = Dog()
snowy.bark() # first argument (self) is bound to this Dog instance
snowy.a = 1 # added attribute a to snowy

m Always define all instance data attributes in __Init first
(even if they are only used later):

class Dataset(object):
def _ init__ (self):
self.data = None

def store_data(self, raw_data):
process the data

self.data = processed_data

Python OO Basics 2

m Don't confuse class and instance attributes.

class Platypus(Mammal):
latin_name = "Ornithorhynchus anatinus"

This is a class attribute, it is shared across all instances.

m Use super to call a method from a superclass.
super(B, self) starts the attribute lookup in the class
“above” class B.

class Dataset(object):
def __init_ (self, data=None):
self.data = data

class MRIDataset(Dataset):
def __init_ (self, data=None, parameters=None):
here has the same effect as calling
Dataset.__init__(self)
super(MRIDataset, self). init__(data)
self.parameters = parameters

mri_data = MRIDataset(data=[1,2,3])

Python OO Basics 3

m Special methods start and end with two underscores and customize
standard Python behavior (e.g. operator overloading).

class Dataset(object):
def _len__ (self):
return 42

a = Dataset()
len(a) # this is 42

class My2Vector(object):
def __init_ (self, x, y):
self.x = x
selfy =y

def __add__ (self, other):
return My2Vector(self.x+other.x, self.y+other.y)

vl
v2
v3

My2Vector(1, 2)
My2Vector(3, 2)
vl + v2

Python OO Basics 4

m Properties allow you to add behavior to data attributes:

class My2Vector(object):
def __init_ (self, x, y):
self. x = x
self. y =y

def get x(self):
return self._x

def set_x(self, x):
self. x = x

X = property(get_x, set x)

define getter using decorator syntax
@property
def y(self):

return self._y

vl = My2Vector(1, 2)

X = vlx # use the getter
vlix = 4 # use the setter
X = vly # use the getter

OO Principles in Python

Python is a dynamically typed language, which means that the type of a
variable is only known when the code runs (as opposed to statically
typed languages, where it is known when you compile code).

m Python supports “duck typing” instead of strict type checking
(“if it talks like a duck, walks like a duck...”).
Important: document your code (e.g. which arguments can be
passed to a function).
However, there are legitimate use cases for explicitly checking the
type of an object (using isinstance).

m Python relies on convention instead of enforcement.
If you want to create a giant mess, Python isn't going to stop you.

m No attributes are really private, use a single underscore to signal that
an attribute is for internal use only (encapsulation).

Python Example

import random

class Die(object): # derive from object for new style classes
""Simulate a generic die.""

def __init_ (self, sides=6):
""Initialize and roll the die.

sides -- Number of faces, with values starting at one (default is 6).

self._sides = sides # leading underscore signals private
self. value = None # value from last roll
self.roll()

def roll(self):
""Roll the die and return the result.""
self._value = 1 + random.randrange(self._sides)
return self._value

def _ str_ (self):
""Return string with a nice description of the die state."
return "Die with %d sides, current value is %d." % (self._sides, self._value)

class WinnerDie(Die):
""Special die class that is twice as likely to return a 1."™"

def roll(self):
""Roll the die and return the result."™
super(WinnerDie, self).roll() # use super instead of Die.roll(self)
if self. value == 1:
return self. value
else:
return super(WinnerDie, self).roll()

Python Example 2

>>> die = Die()
>>> die._sides # we should not access this, but nobody will stop us
6
>>> die.roll
<bound method Die.roll of <dice.Die object at OXO3AE3F70>>
>>> for _ in range(10):
print die.roll()

2265212632
>>> print die # this calls __str__
Die with 6 sides, current value is 2.
>>> winner_die = dice.WinnerDie()
>>> for _ in range(10):

print winner_die.roll(),

22114215651
>>>

Advanced Kung-Fu

Python OO might seem primitive at first. But the dynamic and open
nature means that there is enough power to hang yourself.

Some Buzzwords to give you an idea:

m Multiple inheritance (deriving from multiple classes) can create a real
mess. You have to understand the MRO (Method Resolution Order)
to understand super .

m You can modify classes at runtime, e.g., overwrite or add methods
(“monkey patching” or “duck punching”).

m Metaclasses are derived from type , their instances are classes!
They can be used to manipulate class creation.

...and there is more (descriptors, slots,...)

Try to avoid all of this unless you really need it! (KIS)

Functional programming in Python

Python also supports functional programming to some extend.

m Functions are first class objects, you can pass them around.

def func():
print "test"

a = func
a() # prints "test"

m Python has closures (nested scopes).
Functions can be embedded in functions and remember their context
at the time of creation.

def get_func(text):
def func():
print text
return func

a = get_func("aaa")
b = get func("bbb")
a() # prints "aaa"
b() # prints "bbb"

Functional programming in Python 2

m /ambda (anonymous functions), but limited to a single expression.

>>> gquare = lambda x: x = xx 2
>>> square(2)
4

m [he decorator syntax provides widely used syntactic sugar:

def say_hello(func):
def wrapper(=*args, =** kwargs):
print "Hello!"
return func(rargs, ** kwargs)
return wrapper

@say_hello
def square(x):
return x #x 2

decorator works like:
square = say_hello(square)

x2 = square(2) # this will print "Hello!

Functional programming in Python 3

m Python supports some typical functional patterns like map:

>>> map(range(3), lambda x: x ** 2)
[0, 1, 4]

But the preferred way in Python is to use the more explicit /ist
comprehensions (or iterator comprehensions):

>>> [x *» 2 for x in range(3)]
[0, 1, 4]

m Python does not support tail-call optimization, so recursion is limited
to a depth of around 1000.

Object Oriented Design
Principles

LISKOV SUBSTITUTION PRINCIPLE

It It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

OO0 Design

How do you decide what classes should be defined and how they interact?

First of all realize that this is highly nontrivial!
So take a step back and start with pen and paper.

OO design principles tell you in an abstract way what a good oo
design should look like.

Design patterns are concrete solutions for reoccurring problems.
They satisfy the design principles and can be used to understand and
llustrate them.

They provide a terminology to communicate effectively with other
programmers

Note that the classes and their inheritance in a good design often
have no correspondence to real-world objects.

Design Principles

m |dentify the aspects of your application that vary and separate them
from what stays the same.

m Program to an interface, not an implementation.
m Favor composition over inheritance.
m Strive for loosely coupled designs between objects that interact.

m C(Classes should be open for extension, but closed for modification.
(Open-Closed Principle)

m A class should have only one reason to change.
(Single Responsibility)

from “Head First Design Patterns”

Design Patterns

ey ==18] NOOK
: 10/0 % 17/0

'n
>
=
=
-

18/0 x 160

ANINTNNNR
N

TIDALITE S
IIIE‘EIIII
T

— Q-

‘ GALLERY '-“n ik
i : T R

‘- ;5 136 x 14/8 E s VAILTED
48 E.L.:::::::‘.:'.:::-.i I 1 FAMILY _:| 19X 120
A 4 16/0 % 15/0 =

[DECK I 3T R T DR
-

Origins

It started with this book (1995):
“Design Patterns. Elements of Reusable Object-Oriented Software.”
(GoF, “Gang of Four")

Design Patterns

Elements of Reusable
Object-Oriented Software

SIM-NOSIaay

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

£
15
v
£
=
=

NdWOD

NIL

SARIIAS O

Actually the idea came from a book on architecture.
Obviously identifying patterns is not limited to software...

Learning Design Patterns

Easier to read and more modern (uses Java):

Head First

Desagn Patterns

Liarn W i
Avold those I your friends nm{l l:ga
embarrass ing |5 el F-!l:hl"&fﬂ attir
soupling mistakes & probabiy '-
il wrong .
9 N :

Ay
b ._"‘g_ 2
T Load the patterna
Discovar the stcreis um matier straight
f the Patterns Gu _

N
"
Se0 why Jim's
| lowe life improved
when he cuk down
i hig inharitance

Iterator Pattern

Description

m We want to iterate over different collections / containers of items.
We call such a collection an iterable.

m We create an jterator object that manages the iteration (keeps track
of where we are, which items have already been passed)

m The jterator has a next() method that returns an item from the
collection. When all items have been returned it raises a
Stoplteration exception.

m The jterable provides an __iter_ () method, which returns an
iterator object.

Example

class Mpylterable (object):
""Example iterable that wraps a sequence.™"

def __init__ (self , items):
""" Store the provided sequence of items."™
self .items = items

def __iter__ (self):
return Mylterator(self)

class Mylterator (object):
""" Example iterator that is used by Myilterable.""

def __init__ (self , my_iterable):
""Initialize the iterator.

my_iterable -- Instance of Mylterable.
self ._my iterable = my_iterable
self . _position = 0

def next (self):
if self ._position < len (self ._my_iterable.items):
value = self ._my_iterable.items| self ._position]
self ._position += 1
return value
else :
raise Stoplteration 0

in Python iterators also support iter by returning self
def __iter__ (self):
return self

Example 2

iterable = Mylterable([1,2,3])

perform the iteration manually:

iterator = iter (iterable) # or use iterable. iter_ ()

try
while True :
item = iterator.next()
print item
except Stoplteration
pass
print "lteration done."

or use the Python for-loop:
for item in iterable:

print item
print "lteration done."

iterator also supports iter:

iterator = iter (iterable) # the old iterator has been used up!

for item in iterator:
print item

actually lists in Python are already iterables
for item in [1,2,3]:
print item

Python Specifics

Whenever you use a for-loop in Python you use the power of the
iterator pattern!

This is why they work with so many data types.

(in Java this capability was only added later on)

A typical use case in science is working with a huge data set
(represented by an iterable) by loading and processing it in chunks
(by iterating over it).

For convenience iterators also have an __iter method, but it is
semantically different (returns self).

This is a case where duck typing can be dangerous.

Do not confuse iterables (which are collections) and iterators (they
manage an iteration)!

Python also has generator functions (using the yield keyword),
generator expressions, and generator objects, so don't get confused.

Decorator Pattern

Starbuzz Coffee

class Beverage (object):
imagine some attributes like temperature, amount left,

def get_description (self):
return "beverage"

def get cost (self):
return 0.00

class Coffee (Beverage):

def get_description (self):
return "normal coffee"

def get cost (self):
return 3.00

class Tee(Beverage):
def get_description (self):
return "tee"
def get cost (self):
return 2.50
class CoffeeWithMilk (Coffee):

def get_description (self):
return super (CoffeeWithMilk, self).get_description() + ", with milk"

def get _cost (self):
return super (CoffeeWithMilk, self).get_cost() + 0.30

class CoffeeWithMilkAndSugar (CoffeeWithMilk):

And so on, what a mess!

Second Attempt

class Beverage (object):
def __init__ (self , with_milk, with_sugar):
self .with_milk = with_milk
self .with_sugar = with_sugar

def get_description (self):

description = str (self ._get default_description())
it self .with_milk:

description += ", with milk"
i self .with_sugar:

description += ", with_sugar”

return description

def _get default_description (self):
return "beverage"

def get cost (self):

cost = self . get default _cost()
it self .with_milk:

cost += 0.30
if self .with_sugar:

cost += 0.20

return cost

def _get default_cost (self):
return 0.00

class Coffee (Beverage):

def _get _default_description (self):
return "normal coffee"

def _get default_cost (self):
return 3.00

Analysis

Second solution already looks much cleaner than the first.

_get_default_description is a factory method,
It creates something and is overridden by subclasses
(this is another famous pattern).

But one monolithic class that depends on every little detail.
Hard to maintain (e.g. when adding soy milk as a new option).
Violates the open-closed principle.

Decorator pattern to the rescue!

Decorator

class Beverage (object):

def get_description (self):
return "beverage"

def get_cost (self):
return 0.00

class BeverageDecorator (Beverage):
def __init__ (self , beverage):
super (BeverageDecorator, self).__init_ ()
self .beverage = beverage

class Coffee (Beverage):

def get_description (self):
return "normal coffee"

def get_cost (self):
return 3.00

class Milk (BeverageDecorator):

def get_description (self):
return self .beverage.get _description() +

def get cost (self):
return self .beverage.get cost() + 0.30

coffee_with_milk = Milk(Coffee())

not really needed here

" with milk"

Notes

m Adding new ingredients like soy milk is now very easy and
automatically works with all beverages.

m Anybody can define new custom ingredients without touching the
original code (open-closed principle).

m Thereis no limit to the number of ingredients, this design scales very
well.

The decorator pattern is very popular, for example the Java 1O library is
completely built around it.

Caution: Do not confuse the decorator pattern with the Python
decorator syntax for the wrapping or modification of functions or classes
(2.6) when these are defined (not at runtime, i.e. when the instances are

defined).

Strategy Pattern

Duck Simulator

class Duck(object):

def __init__ (self):
for simplicity this example class is stateless

def quack (self):
print "Quack!"

def display (self):
print "Boring looking duck."

def take_off (self):
print "I'm running fast, flapping with my wings."

def fly_to (self , destination):
print ~ "Now flying to %s." % destination

def land (self):
print "Slowing down, extending legs, touch down."

class RedheadDuck (Duck):

def display (self):
print ~ "Duck with a read head."

class RubberDuck (Duck):

def quack (self):
print "Squeak!"

def display (self):
print ~ "Small yellow rubber duck."

Problem

Oh snap! The RubberDuck is able to fly!

Looks like we have to override all the flying related methods.

But if we want to introduce a DecoyDuck as well we will have to
override all three methods again in the same way (DRY).
And what if a normal duck suffers a broken wing?

ldea: Create a FlyingBehavior class which can be plugged into the
Duck class.

Solution

class FlyingBehavior (object):

def

def

def

Default flying behavior.

take_off (self):
print "I'm running fast, flapping with my wings."

fly to (self , destination):
print ~ "Now flying to %s." % destination

land (self):
print "Slowing down, extending legs, touch down."

class Duck(object):

def

def

def

def

def

def

_init__ (self):
self .flying_behavior = FlyingBehavior()

quack (self):
print "Quack!

display (self):
print ~ "Boring looking duck."

take off (self):
self .flying_behavior.take off()

fly to (self , destination):
self .flying_behavior.fly_to(destination)

land (self):
self .flying_behavior.land()

Solution 2

class NonFlyingBehavior (FlyingBehavior):
""" FlyingBehavior for ducks that are unable to fly.

def take_ off (self):
print "It's not working :-("

def fly to (self , destination):

raise Exception ("I'm not flying anywhere.'

def land (self):
print "That won't be necessary."

class RubberDuck (Duck):

def __init__ (self):
self .flying_behavior = NonFlyingBehavior()

def quack (self):
print "Squeak!"

def display (self):
print ~ "Small yellow rubber duck."

class DecoyDuck (Duck):

def __init__ (self):
self .flying_behavior = NonFlyingBehavior()

def quack (self):
print ™

def display (self):
print ~ "Looks almost like a real duck."

Analysis

m If a poor duck breaks its wing we do:
duck.flying_behavior = NonFlyingBehavior()
Flexibility to change the behaviour at runtime!

m Could have avoided code duplication with inheritance (by defining a
NonFlyingDuck), but with additional behaviors gets complicated
(requiring multiple inheritance).

m Relying less on inheritance and more on composition
(good according to the design principles).

Strategy Pattern

The strategy in this case is the flying behavior.
Strategy pattern in general means:

Encapsulate the different strategies in different classes.
Classes that use the strategy get a strategy object to which they
delegate all the strategy calls.

Note that if the behavior only has a single method we can simply use a
Python function! Therefore it is often said that the strategy pattern is
“Invisible” in Python.

In a scientific applications the strategy could for example be a certain
classification method that is used by another program part (e.g., switch
between Gaussian classifier and SVM).

Strategy Reloaded:
State Pattern

Problem

We have an agent that interacts with an environment or other agents.
This is handled through a public interface with several method.

The behaviour depends on some internal state:

class PirateAgent(object):

def react_to_attack(self, attacker):
if self.wounded and attacker.is_big:
return "<run away>"
else:
return "Arrrrrhhhh!"

But with multiple states and multiple different methods this becomes
messy.

Solution

Enter the state pattern:

Make use of the strategy pattern. For each possible internal state we
have one strategy object. We can switch to another state and strategy
at any time.

The state switch is generally under the control of the strategy / state, so
the state might need a reference to the enclosing context.

Example: Use states to control agent behaviour.
See example for iterated prisoner’'s dilemma, file statepattern.py

Closing Notes on Patterns

END

More on Patterns

Caution: Use patterns only where they fit naturally.
Adapt them to your needs (not the other way round).

Some other famous and important patterns:

Factory Patterns

Observer

Singleton (can use some Python-Fu here)
Adapter

Composite

Combine patterns to solve complex problems.
The Model-View-Controller (MVC) pattern is the most famous example
for such compound patterns.

Acknowledgements

The examples were partly adapted from
“Head First Design Patterns” (O'Reilly)
and

“Building Skills in Python”

http://homepage.mac.com/s lott/baoks/python

The illustration images were downloaded from Google image search,
please inform if they infringe copyright to have them removed.

	Overview
	General Design Principles 1cm [width=0.5]verner-panton-chair.jpg
	Disclaimer
	Good Software Design
	import this

	Object Oriented Programming (in Python) 1cm [width=0.35]reviewbasics.jpg
	Object Orientated Programming (classic)
	Object Orientated Programming 2
	Python OO Basics
	Python OO Basics 2
	Python OO Basics 3
	Python OO Basics 4
	OO Principles in Python
	Python Example
	Python Example 2
	Advanced Kung-Fu
	Functional programming in Python
	Functional programming in Python 2
	Functional programming in Python 3

	Object Oriented Design Principles 0.3cm [width=0.70]liskov.jpg
	OO Design
	Design Principles

	Design Patterns 0.5cm [width=0.6]floorplan.jpg
	Origins
	Learning Design Patterns

	Iterator Pattern
	Description
	Example
	Example 2
	Python Specifics

	Decorator Pattern
	Starbuzz Coffee
	Second Attempt
	Analysis
	Decorator
	Notes

	Strategy Pattern
	Duck Simulator
	Problem
	Solution
	Solution 2
	Analysis
	Strategy Pattern

	Strategy Reloaded: State Pattern
	Problem
	Solution

	Closing Notes on Patterns 1cm [width=0.80]end.jpg
	More on Patterns
	Acknowledgements

