© 0 J O Ot

15

18

24

28

32

/Users/jenskremkow /Science/Courses/python-summerschool-berlin /faculty /Day2 /examples_pynn.py August 30, 2009 1

import numpy

import a simulator

import pyNN.nest as sim

import pyNN.neuron as sim

import pyNN.pcsim as sim

import pyNN.brian as sim

import pyNN.facetshardwarel as sim

Small networks

Before using any other functions or classes from PyNN, the user must call the setup() function
sim.setup (timestep=0.1, min_delay=0.1, max_delay=0.5, debug=False)

Some simulators accept additional arguments, e.g.
sim.setup(rngseeds=[12345,67890],threads=2) # nest

Creating neurons

Neurons are created with the create() function:

sim.create (sim.|F_curr_alpha)

Here, IF_curr_alpha is a so-called “standard cell”, which will work with any PyNN backend, whether NEURON, NEST or .. You don’t have
ro use the standard cells. You can also use neuron models which are only available to a specific simulator:

sim.create(”iaf_neuron”)

To create many neurons at once, add the n argument:

sim.create(sim.IF_curr_alpha ,n=10)

38

40
41

47
48

(G2 B
o

—_

56

/Users/jenskremkow /Science/Courses/python-summerschool-berlin /faculty /Day2 /examples_pynn.py August 30, 2009 2

The neurons we have created so far have all had default paramter values, stored in the default_values of the standard cell class:
print sim.IF_curr_alpha.default_parameters
{’tau_refrac’: 0.0, ’tau_m’: 20.0, ’i_offset’: 0.0, ’cm’: 1.0, ’v_init’: -65.0, ’'v_thresh’:
-50.0, ’'tau_syn_E’: 0.5, ’v_rest’: -65.0, ’'tau_syn_I’: 0.5, ’'v_reset’: -65.0}
To use different paramter values, use the paramter_dict argument:
sim.create(sim.|IF_curr_alpha, cellparams={’tau_m’:15.0, ’cm’:0.9},n=10)

If you wish to do something with the cell after creating it: record from it, change a parameter, connect it to another cell, you should assign
the return value of the function to a variable, e.g.:

cell = sim.create(sim.IF_curr_alpha)
cell_list = sim.create(sim.|IF_curr_alpha ,n=10)

Connecting neurons

Any neuron that emits spikes can be connected to any neuron with at least one synapse using the connect() function:
times = [10.,20.,30.]

spike_source = sim.create(sim.SpikeSourceArray ,{ spike_times :times})
cell_list2 = sim.create(sim.IF_cond_exp ,n=10)
sim.connect (spike_source ,cell_list2)

In case we connect a spike-generating mechanism to each cell in the list, we create 10 connection at once. For clarity, we could also have
specified the arguments names:

sim.connect (source=spike_source , target=cell_list2)

Either source or target or both may be individual cell ids or lists of ids. In the latter case, each source (presynaptic) cell is connected to
every target (postsynaptic) cell with probability given by the optional argument p, which defaults to 1, e.g.:
source_list = cell_list
target_list = cell_list?2
sim.connect (source_list , target_list , p=0.5)

Weights and delays can be specified:

63

68

73
74

76

79

80

82

84

/Users/jenskremkow /Science/Courses/python-summerschool-berlin /faculty /Day2 /examples_pynn.py August 30, 2009 3

sim.connect (source_list , target_list , weight=1.5, delay=1.0)

(Weights are in nA for 'current-based’ synapses or muS for ’conductance-based’ synapses. Delays are in ms. For current-based synapses,
weights should be negative for inhibitory synapses. For conductance-based synapses, weights should always be positive, since the effect of a
synapse is determined by its reversal potential.)

If the neuron model has more than one synapse mechanism, or more than one synaptic location, the particular synapse to which the
connection should be made is specified with the synapse_type argument, e.g.:

sim.connect(source_list , target_list , weight=1.5, delay=1.0,synapse_type="inhibitory ’)

Setting neuron parameters

To change a single parameter of a single neuron, set the relevant attribute of the neuron ID object, e.g.:
cells = sim.create(sim.IF_curr_exp , n=10)

print cells[0].tau_m
20.0
cells[0].tau_m = 15

print cells[0].tau_m

15.0
To change several parameters at once for a single neuron, use the verb|set_parameters()| method of the neuron ID, e.g.:
cells[1].set_parameters (tau_m=10.0, cm=0.5)

print cells[1].tau_m
10.0

print cells[1].cm

0.5
To change parameters for several cells at once, use the set() function, e.g.:

sim.set(cells[0:5], param=’v_init’, val=-65.0)
print cells[0].v_init

87

90

/Users/jenskremkow /Science/Courses/python-summerschool-berlin /faculty /Day2 /examples_pynn.py August 30, 2009 4

-65.0
print cells[5].v_init

-65.0
Individual parameters can be set using the param and val arguments, as above, or multiple parameters can be set at once by passing a dictionary
of name:value pairs as the param argument, with val empty, e.g.:
2.0, 'tau_syn_E’: 5.0})

) .
.

sim.set (cells , param={’'tau_refrac

Setting position in space

In some cases it is important to know the position of a neuron in space. This information can be set and retrieved using the position attribute
of the neuron ID:

cells[0].position = (75, 456, 56)

print cells[0].position
Positions must always be in 3D, and may be given as integers or floating-point values, and as tuples or as numpy arrays. No specific scale
of units is assumed, although many parts of PyNN do assume a Euclidean coordinate system.

Recording spikes and membrane potential

To record action potentials use the record() function and to record membrane potential use the record_v() function. The arguments for both
functions are a cell id or list of ids, and a filename, e.g.: sim.record(cell, “spikes.dat”) sim.record_v(cell_list, “v.dat”)

By default, all simulators write data files in the same format. In some cases it is more efficient to write files in the simulator’s native format,
rather than the standard PyNN format.

Running a simulation and Finishing up

The run() function runs the simulation for a given number of milliseconds, e.g.:

113

117

123

137
138
139

143

/Users/jenskremkow /Science/Courses/python-summerschool-berlin /faculty /Day2 /examples_pynn.py August 30, 2009 5

sim.run (1000.0)

The end() function is called at the end of a simulation to remove temporarly folders etc.
sim.end ()

Standard cell types

Standard models are neuron models that are available in at least two of the simulation engines supported by PyNN. PyNN performs automatic
translation of parameter names, types and units.

from pyNN import nest

print nest.list_standard_models()

Larger networks

Problems with creating very large networks using create() and connect() involves writing a lot of repetitive code, which is the same or similar
for every model: iterating over lists of cells and connections, creating common projection patterns, recording from all or a subset of neurons...

For these reasons, PyNN provides: Populations and Projections

pl = sim.Population ((10,10), sim.IF_curr_exp)
p2 = sim.Population (100, sim.SpikeSourceArray ,label="Input Population”)
p3 = sim.Population(dims=(3,4,5), cellclass=sim.|F_cond_alpha ,cellparams={’'v_thresh’: -55, ’“tau_m’
10}, label="Column 17)
The population dimensions can be retrieved using the dim attribute, e.g.:
print pl.dim, p2.dim, p3.dim

(10, 10) (100,) (3, 4, 5)

while the total number of neurons in a population can be obtained with the Python len() function:

146

149

153

155

157

159

161
162

175

/Users/jenskremkow /Science/Courses/python-summerschool-berlin /faculty /Day2 /examples_pynn.py August 30, 2009 6

print len(pl), len(p2), len(p3)

100 100 60

The previous examples all use PyNN standard cell models. It is also possible to use simulator-specific models, but in this case the cellclass
should be given as a string, e.g.:

p4 = sim.Population (20, ”"iaf_neuron”)
This example will work with NEST but not with NEURON or PCSIM.
Addressing individual neurons

print pl[0,0]
55

print pl[9,9]

154
To obtain an address given the id, use locate(), e.g.:
print p3[2,2,0]

305
print p3.locate (305)

(2, 2, 0)

The positions of individual neurons in a population can be accessed using their position attribute, e.g.:
pl[1,0].position = (0.0, 0.1, 0.2)

print pl[1,0]. position
To obtain the positions of all neurons at once (as a numpy array), use the positions attribute of the Population object, e.g.: pl.positions
Recording

Recording spike times: record() Recording membrane potential: record_v() Record from all neurons in the population
pl.record ()

178

181

190

193

196

201
202

205
206

/Users/jenskremkow /Science/Courses/python-summerschool-berlin /faculty /Day2 /examples_pynn.py August 30, 2009 7

[0. 0.1 0.2]
Record from 10 neurons chosen at random
pl.record (10)

Record from specific neurons
pl.record ([pl[0,0], pl[O,1], pl[O,2]D)
Writing the recorded values to file is done with a second pair of methods, printSpikes() and print_v(), e.g.: pl.printSpikes(“spikefile.dat”)

Connecting two Populations with a Projection

A Projection object is a container for all the synaptic connections of a given type between neurons in two Populations, together with methods
for setting synaptic weights and delays, e.g.:

prj = sim.Projection(p2, pl, sim.AllToAllConnector ())

Use of the OneToOneConnector requires that the pre- and post-synaptic populations have the same dimensions, e.g.:
prj = sim.Projection(pl, pl, sim.OneToOneConnector())

With the FixedProbabilityConnector method, each possible connection between all pre-synaptic neurons and all post-synaptic neurons is
created with probability p_connect:
prj = sim.Projection(p2, p3, sim.FixedProbabilityConnector (0.2))

Setting weights and delays

To set all weights to the same value:
connector = sim.AllToAllConnector (weights=0.7)
prj = sim.Projection(pl, p3, connector)

To set delays to random values taken from a specific distribution:

distr = sim.RandomDistribution (’gamma’, [2.,0.1])
conn = sim.FixedNumberPostConnector (n=20, delays=distr)

/Users/jenskremkow /Science/Courses/python-summerschool-berlin /faculty /Day2 /examples_pynn.py August 30, 2009 8

207 prj = sim.Projection(p2, pl, conn)

To set individual weights and delays to specific values:
210 weights = numpy.arange(1.1, 2.0, 0.9/len(pl))
211 delays = 2xweights
212 connector = sim.OneToOneConnector (weights=weights ,delays=delays)
213 prj = sim.Projection(pl, pl, connector)

Synaptic plasticity

A Projection with facilitating/depressing synapses, but no long-term plasticity:
219 depressing_syn = sim. TsodyksMarkramMechanism ()
220 syn_dyn = sim.SynapseDynamics(fast=depressing_syn)
221 prj = sim.Projection(p4, p4, sim.AllToAllConnector () ,synapse_dynamics=syn_dyn)

	import a simulator
	Small networks
	Creating neurons
	Connecting neurons
	Setting neuron parameters
	Setting position in space
	Recording spikes and membrane potential
	Running a simulation and Finishing up
	Standard cell types
	Larger networks
	For these reasons, PyNN provides: Populations and Projections
	Recording
	Connecting two Populations with a Projection
	Setting weights and delays
	Synaptic plasticity

