
Dive into Python
Author: Bartosz Telenczuk

Why Python?
• high level
• easy to learn
• easy to read
• Open Source
• large library of users-contributed functions

Python Words

What Python is NOT?
• integrated development environment (IDE)
• scientific environment (but wait until Day 3 numpy)
• machine code (hence its slower performance)

Your First Python Program

prices = {'milk': 1.00, 'wine': 2.50, 'apples': 0.6}

def sum_bill(purchase):
 """Calculate the total amount to pay"""
 total = 0
 for item, quantity in purchase:
 total += prices[item]*quantity
 return total

#Testing the code
if __name__=='__main__':
 my_purchase = [('milk', 2), ('wine', 1),
 ('apples', 1.2)]
 bill = sum_bill(my_purchase)

 print 'I owe %.2f Euros' % bill

Python types
Python does not require to provide a type of variables:

>>> a = 1 #integer
>>> b = 1.2 #floating point
>>> c = "test" #string

but values have types:

>>> a + 2
3
>>> a + c
Traceback (most recent call last):
 ...
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Lists
Python list is an ordered sequence of values of any type.

>>> a = [] #an empty list
>>> b = ['eggs', 'butter'] #list of strings
>>> c = ['eggs', 4, []] #mixed-type lists

List elements can be accessed by an index (staring with 0!)

>>> c[0] #get first element
'eggs'

Attempt to access nonexisting element rises an error

>>> c[3]
Traceback (most recent call last):
 ...
IndexError: list index out of range

Modifying Lists
You can assign a new value to an existing element of a list,

>>> c[2] = 3 #modify 3rd element

append a new element:

>>> c.append('flower') #add an element
>>> c
['eggs', 4, 3, 'flower']

or delete any element:

>>> del c[0] #remove an element
>>> c
[4, 3, 'flower']

Lists can be easily concatenated using an addition operator:

>>> c + ['new', 'list'] #concatenate lists
[4, 3, 'flower', 'new', 'list']

Slicing
You can take a subsequence of a list using so called slices:

>>> d = [1, 2, 3, 4, 5, 6]
>>> d[1:3]
[2, 3]
>>> d[:3]
[1, 2, 3]
>>> d[1::2]
[2, 4, 6]

Negative indices count elements starting from the end:

>>> d[-1]
6
>>> d[2:-2]
[3, 4]

Tuples
Tuples are similar to lists:

>>> tup = ('a', 'b', 3)
>>> tup[1]
'b'

but they are immutable:

>>> tup[2]=5
Traceback (most recent call last):
 ...
TypeError: 'tuple' object does not support item assignment

Tuples support easy packing/unpacking:

>>> x, y, z = tup
>>> print x, y, z
a b 3

Python Idiom 1: Swap variables
A common operation is to swap values of two variables:

>>> x, y = (3, 4)
>>> temp = x
>>> x = y
>>> y = temp
>>> print x, y
4 3

This can be done more elegant with tuples:

>>> x, y = (3, 4)
>>> y, x = x, y
>>> print x, y
4 3

Dictionaries
Dictionary defines one-to-one relationships between keys and values (mapping):

>>> tel = {'jack': 4098, 'sape': 4139}

You can look up the value using a key:

>>> tel['sape']
4139

Assigning to a non-existent key creates a new entry:

>>> tel['jack'] = 4100
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'jack': 4100, 'guido': 4127}

Python Idiom 2: Switch/Case statement
How to choose from a set of actions depending on a value of some variable? Using a
chain of if clauses:

if n==1:
 print "Winner!"
elif n==2:
 print "First runner-up"
elif n==3:
 print "Second runner-up"
else:
 print "Work hard next time!"

or better using dictionaries:

comments = {1: "Winner!",
 2: "First runner-up.",
 3: "Second runner-up."
 }

print comments.get(n, "Work hard next time!")

Strings
Use either single or double quotes to create strings:

>>> str1 = '"Hello", she said.'
>>> str2 = "'Hi', he replied."
>>> print str1, str2
"Hello", she said. 'Hi', he replied.

Use triple quotes (of either kind) to create multi-line string:

>>> str3 = """'Hello', she said.
... 'Hi', he replied."""
>>> print str3
'Hello', she said.
'Hi', he replied.

You can also use indexing and slicing with strings:

>>> str1[1]
'H'
>>> str1[1:6]
'Hello'

Idiom 3: Building strings from substrings
If you want to join strings into one string you can use addition:

>>> a = 'Hello' + 'world'
>>> print a
Helloworld

but what if the number of substrings is large?

>>> colors = ['red', 'blue', 'yellow', 'green']
>>> print ''.join(colors)
redblueyellowgreen

You can also use spaces between your substrings:

>>> print ' '.join(colors)
red blue yellow green

String Formatting
In order to get nicely formated output you can use % operator:

>>> name, messages = "Bartosz", 2
>>> text = ('Hello %s, you have %d messages.' % (name, messages))
>>> print text
Hello Bartosz, you have 2 messages.

You can have more control over the output with format specifiers

>>> print 'Real number with 2 digits after point %.2f' % (2/3.)
Real number with 2 digits after point 0.67
>>> print 'Integer padded with zeros %04d' % -1
Integer padded with zeros -001

You can also use named variables:

>>> entry = "%(name)s's phone number is %(phone)d"
>>> print entry % {'name': 'guido', 'phone': 4343}
guido's phone number is 4343

Condtionals
Python uses if, elif, and else to define conditional clauses.

Nested blocks are introduced by a colon and indentation (4 spaces!).

>>> n = -4
>>> if n > 0:
... print 'greater than 0'
... elif n==0:
... print 'equal to 0'
... else:
... print 'less than 0'
less than 0

Python 2.5 introduces conditional expressions:

x = true_value if condition else false_value

>>> abs_n = -1*n if n<0 else n
>>> abs_n
4

Python Idiom 4: Testing for Truth Values
Take advantage of intrinsic truth values when possible:

>>> items = ['ala', 'ma', 'kota']
>>> if items:
... print 'ala has a cat'
... else:
... print 'list is empty'
ala has a cat

False True

False (== 0) True (== 1)

"" (empty string) any string but "" (" ", "anything")

0, 0.0 any number but 0 (1, 0.1, -1, 3.14)

[], (), {}, set() any non-empty container ([0], (None,),
[''])

None almost any object that's not explicitly False

Looping Techniques: While and for loops
Do something repeatedly as long as some condition is true:

>>> num_moons = 3
>>> while num_moons > 0:
... print num_moons,
... num_moons -= 1
3 2 1

If you know number of iterations in advance use for loop:

>>> for i in xrange(3):
... print i,
0 1 2

Note the colon and indentation for the nested blocks!

Python Idiom 5: Iterators
Many data structures provide iterators which ease looping through their elements:

>>> clock = ['tic', 'tac', 'toe']
>>> for x in clock:
... print x,
tic tac toe

>>> prices = {'apples': 1, 'grapes': 3}
>>> for key, value in prices.iteritems():
... print '%s cost %d euro per kilo' % (key, value)
apples cost 1 euro per kilo
grapes cost 3 euro per kilo

If you also need indexes of the items use enumerate:

>>> for i, x in enumerate(clock):
... print i, x,
0 tic 1 tac 2 toe

List Comprehensions
List comprehension provides a compact way of mapping a list into another list by applying
a function to each of its elements:

>>> [x**2 for x in xrange(5)]
[0, 1, 4, 9, 16]

>>> freshfruit = [' banana',
... ' loganberry ',
... 'passion fruit ']
>>> [x.strip() for x in freshfruit]
['banana', 'loganberry', 'passion fruit']

It is also possible to nest list comprehensions:

>>> [[i*j for i in xrange(1,4)] for j in xrange(1,4)]
[[1, 2, 3], [2, 4, 6], [3, 6, 9]]

Declaring Functions
Function definition = identifier + arguments + docstring + content

>>> def double(n):
... """Double and return the input argument."""
... return n*2

Now call the function we have just defined:

>>> a = double(5)
>>> b = double(['one', 'two'])
>>> print a, b
10 ['one', 'two', 'one', 'two']

Functions are objects:

>>> print double.__doc__
Double and return the input argument.

Passing Arguments
It is possible to define default values for arguments:

>>> def bracket(value, lower=0, upper=None):
... """Limit a value to a specific range (lower, upper)"""
... if upper:
... value = min(value, upper)
... return max(value, lower)
>>> bracket(2)
2
>>> bracket(2, 3)
3

Functions can be also called using keyword arguments:

>>> bracket(2, upper=1)
1

Python Idiom 6: Functions as arguments
Functions are first class objects and can be passed as functions arguments like any other
object:

>>> def apply_to_list(func, target_list):
... return [func(x) for x in target_list]

>>> a = range(-3, 5, 2)
>>> b = apply_to_list(bracket, a)
>>> print 'before:', a, 'after:', b
before: [-3, -1, 1, 3] after: [0, 0, 1, 3]

In Python there are several builtin functions operating on functions and lists. For example,
map applies any function to each element of a list:

>>> print map(bracket, a)
[0, 0, 1, 3]

Introspection
You can learn much about Python objects directly in Python interpreter.

• help: prints help information including docstring
• dir: lists all methods and attributes of a class
• type: returns an object's type
• str: gives a string representation of an object

>>> type([])
<type 'list'>
>>> dir([])
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__delslice__', '__doc__', '__eq__', '__ge__', '__getattribute__', '__getitem__', '__getslice__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__setslice__', '__str__', 'append', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

Coding Style
• Use 4-space indentation, and no tabs.
• Wrap lines so that they don't exceed 79 characters.
• Use blank lines to separate functions and classes, and larger blocks of code inside

functions.
• When possible, put comments on a line of their own.
• Use docstrings.
• Use spaces around operators and after commas, but not directly inside bracketing

constructs: a = f(1, 2) + g(3, 4).
• Name your classes and functions consistently; the convention is to use CamelCase

for classes and lower_case_with_underscores for functions and methods.

Check PEP8 for complete list of coding conventions.

http://www.python.org/dev/peps/pep-0008/

Scope
Python looks for the variables in the following order:

• local scope (function)
• module scope
• global scope

>>> a, b = "global A", "global B"

>>> def foo():
... b = "local B"
... print "Function Scope: a=%s, b=%s" % (a, b)

>>> print "Global Scope: a=%s, b=%s" % (a, b)
Global Scope: a=global A, b=global B
>>> foo()
Function Scope: a=global A, b=local B

Function Libraries = Modules
Python allows to organize functions into modules. Every Python file is automatically a
module:

mymodule.py
def bracket(value, lower=0, upper=None):
 """Limit a value to a specific range (lower, upper)"""
 if upper:
 value = min(value, upper)
 return max(value, lower)

 def apply_to_list(func, target_list):
 """Apply function func to each element of the target list)"""
 return [func(x) for x in target_list]

You can import the module into your current scope:

>>> import mymodule
>>> x = range(-2, 4)
>>> mymodule.apply_to_list(mymodule.bracket, x)
[0, 0, 0, 1, 2, 3]

Imports
You can define an alias for your module when importing:

>>> import mymodule as m
>>> m.bracket.__doc__
'Limit a value to a specific range (lower, upper)'

or you can import only specific functions:

>>> from mymodule import bracket
>>> bracket(-5)
0

It is possible to import all definitions from a module:

>>> from mymodule import *
>>> apply_to_list(bracket, [-1, 2, -3])
[0, 2, 0]

but it is NOT recommended!

Python Idiom 7: Testing a module
Often you want to include some sample code or tests with your module which should be
executed only when it is run as a script but not when it is imported.

#mymodule.py
...
if __name__=='__main__':
 x = [-1, 2, 3]
 x_bracket = apply_to_list(bracket, x)
 print "Original List: %s, Bracketed List: %s" % (x, x_bracket)

If you run it from a shell:

> python mymodule.py
Original List: [-1, 2, 3], Bracketed List: [0, 2, 3]

but when you import it:

>>> import mymodule

Simulating Ecosystem
Suppose you want to simulate a small ecosystem of different organisms:

• Plants (don't move)
• Fish (swim)
• Dogs (walk)

You could implement it in a procedural way:

for time in simulation_period:
 for organism in world:
 if type(organism) is plant:
 pass
 elif type(organism) is fish:
 swim(organism, time)
 elif type(organism) is dog:
 walk(organism, time)

but it is not easy to extend it with new organisms.

Objects to the Rescue
In order to solve the problem we define custom types called objects. Each object defines
a way it moves:

for time in simulation_period:
 for organism in world:
 organism.update(time)

Such approach is called object-oriented programming:
• we don't have to remember how each organism moves
• it is easy to add new organisms - no need to change the existing code
• small change, but it allows programmers to think at a higher level

Python Classes
Class is a definition that specifies the properties of a set of objects.

Defining a class in Python:

>>> class Organism(object):
... pass

Creating a class instance (object):

>>> first = Organism()
>>> second = Organism()

Methods
Objects have behaviors and states. Behaviors are defined in methods:

>>> class Organism(object):
... def speak(self, name):
... print "Hi, %s. I'm an organism." % name

The object itself is always passed to the method as its first argument (called self).

Object methods are called using dot notation:

>>> some_organism = Organism()
>>> some_organism.speak('Edgy')
Hi, Edgy. I'm an organism.

Attributes
Current state of the object is defined by attributes. You can access object attributes using
dot notation:

>>> some_organism.species = "unknown"
>>> print some_organism.species
unknown

Attributes can be initialized in a special method called __init__ (constructor):

>>> class Organism(object):
... def __init__(self, species):
... self.species = species

You can pass arguments to the constructor when creating new instance:

>>> some_organism = Organism("amoeba")
>>> print some_organism.species
amoeba

Encapsulation
Methods can access attributes of the object they belong to by referring to self:

>>> class MotileOrganism(object):
... def __init__(self):
... self.position = 0
... def move(self):
... speed = 1
... self.position += speed
... def where(self):
... print "Current position is", self.position

>>> motile_organism = MotileOrganism()
>>> motile_organism.move()
>>> motile_organism.where()
Current position is 1

Any function or method can see and modify any object's internals using its instance
variable.

>>> motile_organism.position = 10

Inheritance
Problem:

Only some organisms can move and other don't, but all of them have names and can
speak (sic!).

Solutions:
• define separate classes for each type of organisms and copy common methods

(WRONG!)
• extend classes with new abilities using inheritance (BETTER!)

Inheritance Example

>>> class Organism(object):
... def __init__(self, species="unknown"):
... self.species = species
... def speak(self):
... print "Hi. I'm a %s." % (self.species)
>>> class MotileOrganism(Organism):
... def __init__(self, species="unknown"):
... self.species = species
... self.position = 0
... def move(self):
... self.position += 1
... def where(self):
... print "Current position is", self.position
>>> algae = Organism("algae")
>>> amoeba = MotileOrganism("amoeba")
>>> amoeba.speak()
Hi. I'm a amoeba.
>>> amoeba.move()
>>> amoeba.where()
Current position is 1

Reading and Writing Files

>>> f = open('workfile', 'r') #Open a file in a readonly mode
>>> f.read() #Read entire file
'This is the first line.\nThis is the second line.\n'
>>> f.seek(0)
>>> f.readline() #Read one line
'This is the first line.\n'

#Use iterator to loop over the lines
>>> f.seek(0)
>>> for line in f:
... print line,
This is the first line.
This is the second line.

#Write a string to a file
>>> f = open('savefile', 'w')
>>> f.write('This is a test\n')
>>> f.close()

Regular Expressions
Regular expressions provide simple means to identify strings of text of interest.

First define a pattern to be matched:

>>> import re
>>> p = re.compile('name=([a-z]+)')

Now try if a string "tempo" matches it:

>>> m = p.match('name=bartosz')
>>> m.group()
'name=bartosz'

or search for the matching substring and :

>>> m = p.search('id=1;name=bartosz;status=student')
>>> m.group()
'name=bartosz'

You can also parse the string for some specific information:

>>> m.group(1)
'bartosz'

Learn more about regexp in the short HOWTO

http://docs.python.org/howto/regex.html

Exceptions
Python exceptions are cought the try block and handled in except block:

>>> filename = 'nonexisting.file'
>>> try:
... f = open(filename, 'r')
... except IOError:
... print 'cannot open:', filename
cannot open: nonexisting.file

To trigger exception processing use raise:

>>> for i in range(4):
... try:
... if (i % 2) == 1:
... raise ValueError('index is odd')
... except ValueError, e:
... print 'caught exception for %d' % i, e
caught exception for 1 index is odd
caught exception for 3 index is odd

Built-in exceptions lists the built-in exceptions and their meaning.

http://docs.python.org/library/exceptions.html#bltin-exceptions

	Why Python?
	Python Words
	What Python is NOT?
	Your First Python Program
	Python types
	Lists
	Modifying Lists
	Slicing
	Tuples
	Python Idiom 1: Swap variables
	Dictionaries
	Python Idiom 2: Switch/Case statement
	Strings
	Idiom 3: Building strings from substrings
	String Formatting
	Condtionals
	Python Idiom 4: Testing for Truth Values
	Looping Techniques: While and for loops
	Python Idiom 5: Iterators
	List Comprehensions
	Declaring Functions
	Passing Arguments
	Python Idiom 6: Functions as arguments
	Introspection
	Coding Style
	Scope
	Function Libraries = Modules
	Imports
	Python Idiom 7: Testing a module
	Simulating Ecosystem
	Objects to the Rescue
	Python Classes
	Methods
	Attributes
	Encapsulation
	Inheritance
	Inheritance Example
	Reading and Writing Files
	Regular Expressions
	Exceptions

