Dive into Python

Author: Bartosz Telenczuk

Why Python?

high level

easy to learn

easy to read

Open Source

large library of users-contributed functions

Python Words

SGRIPTING
DYNAMICALLY TYPEDSTRONGLY TYPED

HIGH-LEVELGENERAL PURPOSE
MEMORY MANAGEMENT
OBJECT-ORIENTED

What Python is NOT?

* integrated development environment (IDE)
« scientific environment (but wait until Day 3 nunpy)
* machine code (hence its slower performance)

Your First Python Program
prices = {'mlk': 1.00, "wine': 2.50, '"apples': 0.6}

def sum bill (purchase):
"""Cal culate the total anount to pay"""
total = 0
for item quantity in purchase:
total += prices[iten]*quantity
return total

#Testing the code
if __nane__=="__main__
nmy_purchase = [(‘m k', 2), ("wine', 1),
('apples', 1.2)]
bill = sumbill (my_purchase)

print 'I owe % 2f Euros' %bill

Python types

Python does not require to provide a type of variables:

>>> g = 1 #integer
>>> b = 1.2 #floating point
>>> ¢ = "test" #string

but values have types:

>>> a + 2

3

>>> a + ¢

Traceback (nost recent call last):

TypeError: unsupported operand type(s) for +: "int' and 'str

Lists

Python list is an ordered sequence of values of any type.

>>> a = [] #an enpty |i st
>>> b = ['eggs', 'butter'] #list of strings
>>> ¢ = ['eggs', 4, []1] #m xed-type lists

List elements can be accessed by an index (staring with 0!)

>>> ¢[0] #get first el ement
' eggs’

Attempt to access nonexisting element rises an error

>>> c[3]
Traceback (nost recent call last):

I ndexError: |ist index out of range

Modifying Lists
You can assign a new value to an existing element of a list,
>>> ¢c[2] =3 #nodi fy 3rd el enent
append a new element:
>>> c. append(' fl ower") #add an el enent
>>> ¢
['eggs', 4, 3, 'flower']
or delete any element:
>>> del c[0] #renmove an el enent
>>> C

[4, 3, 'flower']

Lists can be easily concatenated using an addition operator:

>>> ¢ + ['new, 'list'] #concatenate lists

[4, 3, '"flower', "new , 'list']

Slicing
You can take a subsequence of a list using so called slices:

>>d =[1, 2, 3, 4, 5, 6]
>>> d[1: 3]

[2, 3]

>>> d[: 3]

[1, 2, 3]

>>> d[1:: 2]

[2, 4, 6]

Negative indices count elements starting from the end:

>>> d[- 1]

6

>>> d[2: - 2]
[3, 4]

Tuples

Tuples are similar to lists:

>>> tup = ("a', 'b", 3)
>>> tup[1]
Ibl

but they are immutable:

>>> tup[2] =5
Traceback (nost recent call last):

TypeError: '"tuple' object does not support item assignnent
Tuples support easy packing/unpacking:
>>> X, y, z = tup

>>> print x, y, z
abs3

Python Idiom 1: Swap variables

A common operation is to swap values of two variables:

>>> X
>>> t
>>> X
>>> y
>>> p
4 3

This can be done more elegant with tuples:
>>> X, Yy (3, 4)
>>> y, X X, Y

>>> print X, y

4 3

Dictionaries

Dictionary defines one-to-one relationships between keys and values (mapping):
>>> tel = {'jack': 4098, 'sape': 4139}
You can look up the value using a key:

>>> tel ['sape']
4139

Assigning to a non-existent key creates a new entry:

>>> tel['jack'] = 4100
>>> tel['guido'] = 4127
>>> tel

{'sape': 4139, 'jack': 4100, 'guido': 4127}

Python Idiom 2: Switch/Case statement

How to choose from a set of actions depending on a value of some variable? Using a
chain of if clauses:

if n==1:

print "Wnner!"
elif n==2:

print "First runner-up"
elif n==3:

print "Second runner-up"
el se:

print "Work hard next tine!"
or better using dictionaries:

"W nner!",

comments = {1:

2: "First runner-up."
3:

}

"Second runner-up."

print comments.get(n, "Wk hard next time!")

Strings

Use either single or double quotes to create strings:

>>> strl = '""Hell 0", she said.'

>>> gstr2 = ""H', he replied."”

>>> print strl, str2

"Hel l 0", she said. "H ', he replied.

Use triple quotes (of either kind) to create multi-line string:

>>> gtr3 = """'Hell o', she said.
"H', he replied."""

>>> print str3

"Hell o', she said.

"H', he replied.

You can also use indexing and slicing with strings:

>>> strlf 1]
CH

>>> strlf 1: 6]
"Hel | o

Idiom 3: Building strings from substrings

If you want to join strings into one string you can use addition:

>>> a = 'Hello' + "world'
>>> print a
Hel | owor | d

but what if the number of substrings is large?
>>> colors = ['red', '"blue', '"yellow, 'green']
>>> print ''.join(colors)
redbl ueyel | owgr een

You can also use spaces between your substrings:

>>> print ' '.join(colors)
red bl ue yell ow green

String Formatting

In order to get nicely formated output you can use %operator:

>>> pame, nessages = "Bartosz", 2

>>> text = ("Hello %, you have %l nmessages.' % (nhame, nessages))
>>> print text

Hell o Bartosz, you have 2 nessages.

You can have more control over the output with format specifiers

>>> print 'Real nunber with 2 digits after point % 2f' % (2/3.)
Real nunmber with 2 digits after point 0.67

>>> print 'lInteger padded with zeros %4d" % -1

I nt eger padded with zeros -001

You can also use named variables:
>>> entry = "% nane)s's phone nunber is % phone)d"

>>> print entry %{' name': 'guido', 'phone': 4343}
gui do' s phone nunber is 4343

Condtionals

Python usesi f, el i f, and el se to define conditional clauses.

Nested blocks are introduced by a colon and indentation (4 spaces!).

>>>n = -4
>>> jf n > 0:
print 'greater than 0
elif n==0:
print 'equal to O
el se:
print 'less than 0
I ess than 0
Python 2.5 introduces conditional expressions:
x = true_value if condition el se fal se_val ue
>>> abs n = -1*n if n<0 else n

>>> abs_n
4

Python Idiom 4: Testing for Truth Values

Take advantage of intrinsic truth values when possible:

>>> jtens = ['ala', 'ma', 'kota']
>>> | f itemns:
print 'ala has a cat'
el se:
print "list is enpty'
al a has a cat

False True
Fal se (==0) True (==1)
"" (empty string) any string but"" (* ", "anyt hi ng")
0,0.0 any number but 0 (1, 0.1, -1, 3.14)
[1,.0,{},set() any non-empty container ([0], (None,),
["'1)
None almost any object that's not explicitly False

Looping Techniques: While and for loops

Do something repeatedly as long as some condition is true:

>>> num_noons = 3

>>> whi |l e num noons > O:
print num_noons,
.. num noons -= 1
321

If you know number of iterations in advance use for loop:
>>> for i in xrange(3):

.. print i,

012

Note the colon and indentation for the nested blocks!

Python Idiom 5: Iterators

Many data structures provide iterators which ease looping through their elements:

>>> clock = ['tic', '"tac', 'toe']
>>> for x in clock:
print x,

tic tac toe

>>> prices = {'apples': 1, 'grapes': 3}
>>> for key, value in prices.iteritens():
: print '% cost % euro per kilo' % (key, val ue)
apples cost 1 euro per kilo
grapes cost 3 euro per kilo

If you also need indexes of the items use enuner at e:

>>> for i, x in enunerate(clock):
print i, x,
0 t|c 1 tac 2 toe

List Comprehensions

List comprehension provides a compact way of mapping a list into another list by applying
a function to each of its elements:

>>> [x**2 for x in xrange(5)]
[0, 1, 4, 9, 16]

>>> freshfruit = [' banana',
| oganberry ',
"passion fruit ']
>>> [x. strlp() for x in freshfrwt]
['banana', 'l oganberry', 'passion fruit']

It is also possible to nest list comprehensions:

>>> [[i*] for i in xrange(l1,4)] for j in xrange(1,4)]
[[1, 2, 3], [2, 4, 6], [3, 6, 9]]

Declaring Functions
Function definition = identifier + arguments + docstring + content
>>> def doubl e(n):

"""Double and return the input argunent.
return n*2

Now call the function we have just defined:

>>> a = doubl e(5)

>>> p = doubl e(['one', "two'])
>>> print a, b
10 ['one', '"two', 'one', 'two']

Functions are objects:

>>> print double. doc__
Doubl e and return the input argunent.

Passing Arguments

It is possible to define default values for arguments:

>>> def bracket (val ue, |ower=0, upper=None):
"""limt a value to a specific range (lower, upper)"""
i f upper:
val ue = m n(val ue, upper)
.. return max(val ue, | ower)
>>> bracket (2)
2
>>> bracket (2, 3)
3

Functions can be also called using keyword arguments:

>>> bracket (2, upper=1)
1

Python Idiom 6: Functions as arguments

Functions are first class objects and can be passed as functions arguments like any other
object:

>>> def apply_to list(func, target list):
: return [func(x) for x in target list]

>>> a = range(-3, 5, 2)

>>> b = apply_to _list(bracket, a)

>>> print 'before:', a, 'after:', b
before: [-3, -1, 1, 3] after: [0, O, 1, 3]

In Python there are several builtin functions operating on functions and lists. For example,
map applies any function to each element of a list:

>>> print map(bracket, a)
[0, O, 1, 3]

Introspection

You can learn much about Python objects directly in Python interpreter.
* hel p: prints help information including docstring
 di r: lists all methods and attributes of a class
e type: returns an object's type
e str: gives a string representation of an object

Coding Style

* Use 4-space indentation, and no tabs.

* Wrap lines so that they don't exceed 79 characters.

« Use blank lines to separate functions and classes, and larger blocks of code inside
functions.

¢ When possible, put comments on a line of their own.

¢ Use docstrings.

« Use spaces around operators and after commas, but not directly inside bracketing
constructs:a = f(1, 2) + g(3, 4).

* Name your classes and functions consistently; the convention is to use Canel Case
for classes and | ower _case_wi t h_under scor es for functions and methods.

Check PEPS for complete list of coding conventions.

http://www.python.org/dev/peps/pep-0008/

Scope

Python looks for the variables in the following order:

* local scope (function)
¢ module scope
 global scope

>>> a, b = "global A", "global B"

>>> def foo():
b = "local B"

print "Function Scope: a=%, b=%" % (a, b)

>>> print "d obal Scope: a=%, b=%" % (a, b)
d obal Scope: a=gl obal A, b=global B

>>> foo()

Function Scope: a=global A, b=local B

Function Libraries = Modules

Python allows to organize functions into modules. Every Python file is automatically a
module:

nynodul e. py
def bracket (val ue, |ower=0, upper=None):
"""Limt a value to a specific range (lower, upper)"""
i f upper:
val ue = m n(val ue, upper)
return max(val ue, | ower)

def apply_ to list(func, target list):
"""Apply function func to each elenent of the target list)"""
return [func(x) for x in target |ist]

You can import the module into your current scope:

>>> jnport mynodul e

>>> X = range(-2, 4)

>>> nynodul e. apply_to_list(nmynodul e. bracket, x)
[0, O, O, 1, 2, 3]

Imports

You can define an alias for your module when importing:

>>> jnport nmynodul e as m
>>> m bracket. doc__
"Limt a value to a specific range (Il ower,

or you can import only specific functions:

>>> from nynodul e i nport bracket
>>> pracket (-5)
0

It is possible to import all definitions from a module:

>>> from nynodul e i nport *
>>> apply_to list(bracket, [-1, 2, -3])
[0, 2, 0]

but it is NOT recommended!

upper)

Python Idiom 7: Testing a module

Often you want to include some sample code or tests with your module which should be
executed only when it is run as a script but not when it is imported.

#mynmodul e. py

if __name__ =="_ main__'
x =[-1, 2, 3]
x_bracket = apply_to_list(bracket, x)
print "Original List: %, Bracketed List: %" % (x, x_bracket)

If you run it from a shell:

> pyt hon nynodul e. py
Original List: [-1, 2, 3], Bracketed List: [0, 2, 3]

but when you import it:

>>> jnport nynodul e

Simulating Ecosystem

Suppose you want to simulate a small ecosystem of different organisms:

¢ Plants (don't move)
e Fish (swim)
* Dogs (walk)

You could implement it in a procedural way:

for time in simulation_period:
for organismin worl d:

if type(organism is plant:
pass

elif type(organism is fish:
swi m(organi sm tine)

elif type(organism is dog:
wal k(organi sm tine)

but it is not easy to extend it with new organisms.

Objects to the Rescue

In order to solve the problem we define custom types called objects. Each object defines
a way it moves:

for time in simnulation_period:
for organismin world:
organi sm updat e(ti ne)

Such approach is called object-oriented programming:
« we don't have to remember how each organism moves
« itis easy to add new organisms - no need to change the existing code
« small change, but it allows programmers to think at a higher level

Python Classes

Class is a definition that specifies the properties of a set of objects.

Defining a class in Python:

>>> cl ass Organi sn{object):
pass

Creating a class instance (object):

>>> first = Qrganism)
>>> second = O gani sm()

Methods

Objects have behaviors and states. Behaviors are defined in methods:

>>> cl ass Organi sn{object):
def speak(sel f, nane):
print "H, %. |'man organism" % nane

The object itself is always passed to the method as its first argument (called sel f).
Object methods are called using dot notation:
>>> gsome_organi sm = O ganisn()

>>> gsome_or gani sm speak(' Edgy')
H, Edgy. I'man organism

Attributes

Current state of the object is defined by attributes. You can access object attributes using
dot notation:

>>> some_organi sm speci es = "unknown"
>>> print sone_organi sm species
unknown

Attributes can be initialized in a special method called __i ni t __ (constructor):

>>> cl ass Organi sm(obj ect):
def __init__ (self, species):
sel f. speci es = speci es

You can pass arguments to the constructor when creating new instance:

>>> some_organi sm = Organi sm(" anoeba™)
>>> print some_organi sm species
anoeba

Encapsulation

Methods can access attributes of the object they belong to by referring to sel f:

>>> class Motil eOrgani sn(object):

def __init__(self):
sel f.position = 0

def nove(self):
speed = 1
sel f. position += speed

def where(self):
print "Current position is", self.position

>>> notil e_organi sm = Mtil eO gani sm)
>>> notil e_organi sm nove()

>>> noti | e_organi sm where()

Current position is 1

Any function or method can see and modify any object's internals using its instance
variable.

>>> notil e_organi smposition = 10

Inheritance

Problem:
Only some organisms can move and other don't, but all of them have names and can
speak (sic!).

Solutions:
« define separate classes for each type of organisms and copy common methods

(WRONG!)
¢ extend classes with new abilities using inheritance (BETTER!)

Inheritance Example

>>> cl ass Organi sn{object):
def __init__(self, species="unknown"):
sel f. speci es = species
def speak(self):

- print "H. I'ma %." % (self.species)
>>> class Motil eOrgani sn(Organi sm:
def __init_ (self, species="unknown"):

sel f. speci es = species
sel f.position = 0
def nove(self):
self.position += 1
def where(self):
C print "Current position is", self.position
>>> al gae = Organi sm("al gae")
>>> anpeba = Motil eOrgani sn("anoeba")
>>> anpeba. speak()
H . |'ma anpeba.
>>> anpeba. nove()
>>> anpeba. wher e()
Current position is 1

Reading and Writing Files

>>> f = open('workfile', 'r') #Open a file in a readonly node
>>> f.read() #Read entire file

"This is the first line.\nThis is the second line.\n'

>>> f . seek(0)

>>> f.readline() #Read one line

"This is the first line.\n'

#Use iterator to | oop over the lines
>>> f . seek(0)

>>> for line in f:

.. print line,

This is the first |ine.

This is the second |ine.

#Wite a string to a file

>>> f = open(' savefile', '"wW)
>>> f . wite('This is a test\n')
>>> f . cl ose()

Regular Expressions

Regular expressions provide simple means to identify strings of text of interest.

First define a pattern to be matched:

>>> jnport re
>>> p = re.conpile(' nane=([a-z]+)")

Now try if a string "tempo" matches it:

>>> m = p. match(' nane=bartosz')
>>> m group()
' name=bart osz'

or search for the matching substring and :
>>> m = p.search('id=1; name=bart osz; st at us=st udent ')
>>> m group()

' nane=bart osz'

You can also parse the string for some specific information:

>>> m group(1)
" bartosz'

Learn more about regexp in the short HOWTO

http://docs.python.org/howto/regex.html

Exceptions

Python exceptions are cought the t r y block and handled in except block:

>>> filename = 'nonexisting.file
>>> try:
f = open(filenanme, 'r'")
except | OError:
: print 'cannot open:', fil ename
cannot open: nonexisting.file

To trigger exception processing use r ai se:

>>> for i in range(4):
try:
if (i %2) == 1:
rai se ValueError('index is odd")

except Val ueError, e:
print 'caught exception for %' %i, e

Caught exception for 1 index is odd
caught exception for 3 index is odd

Built-in exceptions lists the built-in exceptions and their meaning.

http://docs.python.org/library/exceptions.html#bltin-exceptions

	Why Python?
	Python Words
	What Python is NOT?
	Your First Python Program
	Python types
	Lists
	Modifying Lists
	Slicing
	Tuples
	Python Idiom 1: Swap variables
	Dictionaries
	Python Idiom 2: Switch/Case statement
	Strings
	Idiom 3: Building strings from substrings
	String Formatting
	Condtionals
	Python Idiom 4: Testing for Truth Values
	Looping Techniques: While and for loops
	Python Idiom 5: Iterators
	List Comprehensions
	Declaring Functions
	Passing Arguments
	Python Idiom 6: Functions as arguments
	Introspection
	Coding Style
	Scope
	Function Libraries = Modules
	Imports
	Python Idiom 7: Testing a module
	Simulating Ecosystem
	Objects to the Rescue
	Python Classes
	Methods
	Attributes
	Encapsulation
	Inheritance
	Inheritance Example
	Reading and Writing Files
	Regular Expressions
	Exceptions

