Data Serialization
From pickle to databases and HDF5

Francesc Alted

Freelance Developer and PyTables Creator

Advanced Scientific Programming in Python
2010 Autumn School, Trento, Italy

Francesc Alted Data Serialization

Outline

@ Introduction

© The Basics
@ Pickling our objects
@ The shelve module

© Relational databases
@ What's a relational database?
@ Queries
@ ORM packages

@ Numerical Binary Formats
@ Why we need them?
@ The NPY format
@ The HDF5 format
@ The NetCDF4 format

Francesc Alted Data Serialization

Introduction

“serialization” means?

“Serialization is the process of converting a data
structure or object into a sequence of bits so that it can
be stored in a file or memory buffer, or transmitted across
a network connection link to be "resurrected" later in the
same or another computer environment.”

“The basic mechanisms are to flatten object(s) into a
one-dimensional stream of bits, and to turn that stream
of bits back into the original object(s).”

— From http://www.parashift.com/c++-fag-
lite/serialization.html

Francesc Alted Data Serialization

Introduction

Serialization tools

There are literally zillions of serialization tools and formats (text,
XML, or binary based), but well be focusing on those that are:

@ Easy to use
@ Space-efficient
@ Fast

In particular, we are not going to discuss text-based formats (e.g.
XML, CSV, JSON, YAML ...).

Francesc Alted Data Serialization

Introduction

Serialization tools that comes with Python

Python comes with a complete toolset of modules for serialization
purposes:
o pickle, and its cousin, cPickle, for quick-and-dirty serialization.
@ shelve, a persistent dictionary based on DBM databases.

@ A common database API for communicating with relational
databases.

Francesc Alted Data Serialization

Introduction

Serialization tools for binary data

Additionally, there are lots of third-party libraries for specialized
uses. Here will center on numerical formats:
@ NPY, NPZ: NumPy own’s format.
@ Wrappers for HDF5, a standard de-facto format and library:
PyTables, h5py.
@ Wrappers for NetCDF4, a widely used library based on HDF5:
netcdf4-python, Scientific.|O.NetCDF.

Francesc Alted Data Serialization

The Basics Pickling our objects

The shelve module

Outline

© The Basics
@ Pickling our objects

Francesc Alted Data Serialization

The Basics

Pickling our objects
The shelve module

The pickle module

Serializes an object into a stream of bytes that can be saved to a
file and later restored:

Example

import pickle

obj = SomelObject ()

f = open(filename, ’wb’)
pickle.dump(obj, f)
f.close()

... later on

import pickle

f = open(filename, ’rb’)
obj = pickle.load(f)
f.close()

Francesc Alted Data Serialization

The Basics Pickling our objects

The shelve module

What pickle does

@ It can serialize both basic Python data structures or
user-defined classes.

o Always serializes data, not code (it tries to import classes if
found in the pickle).

For security reasons, programs should not unpickle data received
from untrusted sources.

Francesc Alted Data Serialization

The Basics Pickling our objects

The shelve module

Its cPickle cousin

@ Implemented in C (i.e. significantly faster than pickle).

@ But more restrictive (does not allow subclassing of the
Pickler and Unpickler objects).

@ Python 3 pickle can use the C implementation transparently.

Francesc Alted Data Serialization

The Basics Pickling our objects

The shelve module

Pickling a NumPy array

>>> a = np.linspace(0, 100, 1le7)

>>> time pickle.dump(a, open(’pl’,’w’))
CPU times: wuser 5.89 s, sys: 0.59 s, total: 6.48 s

>>> time pickle.dump(a, open(’p2’,’w’), pickle.HIGHEST_PROTOCOL)
CPU times: wuser 0.05 s, sys: 0.12 s, total: 0.16 s

>>> time cPickle.dump(a, open(’p3’,’w’), pickle.HIGHEST_PROTOCOL)
CPU times: wuser 0.02 s, sys: 0.08 s, total: 0.11 s

>>> 1s -sh pl p2 p3
186M pl 77M p2 77M p3

Always try to use cPickle and HIGHEST_PROTOCOL)

Francesc Alted Data Serialization

The Basics Pickling our objects

The shelve module

pickle/cPickle limitations

@ You need to reload all the data in the pickle before you can use
any part of it. That might be inconvenient for large datasets.

@ Data can only be retrieved by other Python interpreters. You
loose data portability with other languages.

@ Not every object in Python can be serialized by pickle (e.g.
extensions).

Francesc Alted Data Serialization

The Basics Pickling our objects

The shelve module

Recommendations for using pickle

@ Use it mainly for small data structures.

@ If you have a lot of variables that you want to save, use a
dictionary for tying them together first.

@ When using the IPython shell, be sure to use the very
convenient %store magic (it uses pickle under the hood).

Francesc Alted Data Serialization

The Basics Pickling our objects

The shelve module

Outline

© The Basics

@ The shelve module

Francesc Alted Data Serialization

The Basics Pickling our objects

The shelve module

The shelve module

@ Provides support for persitent objects using a special “shelf”
object.

@ The “shelf” behaves like a disk-based dictionary (DBM-style).

@ The values of the dictionary can be any object that can be
pickled.

Francesc Alted Data Serialization

The Basics Pickling our objects
The shelve module

Example with shelve

>>> import shelve

>>> db = shelve.open('"database", "c")
>>> db["one"] = 1
>>> db["two"] = 2
>>> db["three"]
>>> db.close()

]
w

>>> db = shelve.open('"database", "r")
>>> for key in db.keys():
....: print repr(key), repr(dbl[keyl)

’one’ 1
’two’ 2
’three’ 3

Francesc Alted Data Serialization

The Basics

Pickling our objects
The shelve module

Pros and cons of the shelve module

Easy to retrieve just a selected set of variables.
Specially handy for large pickles.

Suffers the same problems than pickle.

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

Outline

© Relational databases
@ What's a relational database?

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

What's a relational database?

@ A set of tables containing data fitted into predefined
categories.

@ Each table (a relation) contains one or more data categories in
columns.

@ Each row contains a unique instance of data for the categories
defined by the columns.

@ Data can be accessed in many different ways without having
to reorganize the tables.

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

Terminology

Attribute
ey,

Tuple {

———
Relation

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

Base and derived relations

o In a relational database, all data are stored and accessed via
relations.

@ Relations that store data are called "base relations", and in
implementations are called "tables".

@ Other relations do not store data, but are computed by
applying relational operations to other relations.

@ These relations are sometimes called "derived relations", and
in implementations these are called "views" or "queries".

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
> t ORM packages

Example of relational database

PublD Publisher PubAddress
03-4472822 | Random House 123 4th Street, New York
04-7733903 | Wiley and Sons 45 Lincoln Bivd, Chicago
03-4859223 | O'Reilly Press 77 Boston Ave, Cambridge
03-3920886 | City Lights Books | 99 Market, San Francisco

AuthorlD AuthorName AuthorBDay
345-28-2938 | Haile Selassi 14-Aug-92
392-48-9965 | Joe Blow 14-Mar-15
454-22-4012 | Sally Hemmings 12-Sept-70
663-59-1254 | Hannah Arendt 12-Mar-06

ISBN AuthorlD PublD Date Title

1-34532-482-1 345.28-2938 03-4472822 1990 Cald Fusion for Dummies
1-38482-995-1 3092-48-9965 | 04-7733903 | 1985 Macrame and Straw Tying
2-35821-499-4 | 454.22-4012 03-4859223 1952 Fluid Dynamics of Aquaducts
1-38278-293-4 663-59-1254 03-3920886 1967 Beads, Baskets & Revolution

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

RDBMs highlights

They offer ACID (atomicity, consistency, isolation, durability)
properties, that can be translated into:

@ Referential integrity.
@ Transaction support.
@ Data consistency.

+ Indexing capabilities (accelerate queries in large tables).
But this comes with a price...

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

RDBMs drawbacks

@ Insertions are SLOOOW.
@ Not very space-efficient (1 data byte -> 2 or 3 bytes on disk).

@ Not well adapted to handle large numerical datasets (no direct
interface with NumPy).

@ You need a knowledgeable RDBM administrator to squeeze all
the performance out of them.

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

Outline

© Relational databases

@ Queries

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

Queries with SQL language

Simple query involving one single table (relation):
SELECT AuthorName FROM AUTHORS WHERE AuthorBDay > 1970 J

Complex query involving multiple relations:

SELECT AuthorName FROM AUTHORS a, BOOKS b, PUBLISHERS p
WHERE AuthorBDay > 1970
AND a.AuthorID = b.AuthorID
AND b.PubID = p.PubID
AND p.Publisher = "Random House"
GROUP BY AuthorBDay

Beware: complex queries can consume a lot of resources!

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

Relational database API specification

@ The Python community has developed a standard API for
accessing relational databases in a uniform way (PEP 249).

@ Specific database modules (e.g. MySQL, Oracle, Postgres ...)
follow this specification, but may add more features.

@ Python comes with SQLite, a relational database accessible via
the sqlite3 module.

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

Outline

© Relational databases

@ ORM packages

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

ORM (Object Relational Mapping)

@ The relational database APl in Python is powerful, but pretty
rough to use and not object-oriented.

@ Many projects have appeared to add such a object-oriented
layer on top of this API:

SQLAIchemy

Django's native ORM

Storm

Elixir

SQLObject (the one that started it all)
... probably a lot more ...

¢ © @ ¢ ¢ @€

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

Creating a database with an ORM (Storm)

class Kind:
__storm_table__ = ’kinds’
id = Int(primary=True)
name = Unicode()

class Thing:
__storm_table__ = ’things’
id = Int(primary=True)
name = Unicode ()
description = Unicode()
kind_id = Int()
kind = Reference(kind_id, Kind.id)

db = create_database(’sqlite:’); store = Store(db)
kind = Kind(name=’Flowers’); store.add(kind)

thing = Thing(name=’Red Rose’); thing.kind = kind;
store.add(thing)

store.commit ()

Francesc Alted Data Serialization

What's a relational database?
Relational databases Queries
ORM packages

Querying with an ORM (Storm)

>>> result = store.find((Kind, Thing),
Thing.kind_id == Kind.id,
Thing.name.like (u"}% Rose %"))

>>> [(kind.name, thing.name) for kind, thing in result]
[(u’Flowers’, u’Red Rose’), (u’Jars’, u’Rose Vase’)]

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Outline

@ Numerical Binary Formats
@ Why we need them?

Francesc Alted Data Serialization

Why we need them?
The NPY format

Numerical Binary Formats Ulirz [RIPIFD iz
Y, The NetCDF4 format

What's a numerical binary format?

@ It is a format specialized in saving and retrieving large
amounts of numerical data.

@ Usually come with libraries that can understand that format.

@ They range from the very simple (NPY) to rather complex and
powerful (HDF5).

@ There are a really huge number of numerical formats
depending on the needs. Will center just on a few.

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Why we need a binary format?

@ They are closer to memory representation.

@ Their representation is space-efficient (1 byte in-memory ~ 1
byte on disk).

@ They are CPU-friendly (in general you do not have to convert
from one representation to another).

Francesc Alted Data Serialization

Why we need them?
The NPY format

Numerical Binary Formats Ulirz [RIPIFD iz
Y, The NetCDF4 format

NumPy: the real cornerstone of numerical interfaces

@ NumPy is the standard de-facto for dealing with numerical
data in-memory.

@ Hence, most of the interfaces to numerical formats in the
Python world use NumPy to interact with the database.

@ In some cases the integration is so tight that it could be
difficult to say if you are working with NumPy or the interface.

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Outline

@ Numerical Binary Formats

@ The NPY format

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

The NPY format

@ Created back in 2007 for overcoming limitations of pickle for
NumPy arrays as well as numpy.tofile() /
numpy . fromfile() functions (see “A Simple File Format for
NumPy Arrays” NEP).

@ It is a binary format, so it is space-efficient.

@ It comes integrated with NumPy.

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

NPY exposes the simplest APl for NumPy

Available via save/load NumPy functions:

>>> data = numpy.arange (1e7)

>>> numpy.save(’test.npy’, data)
>>> data2 = numpy.load(’test.npy’)
>>> numpy.alltrue(data == data2)
True

Simple to use!

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Memory-mapping and NPY

You can open a NPY file in memmap-mode for accessing data
directly from disk:

>>> mmdata = numpy.load(’test.npy’, mmap_mode=’r+’)

>>> mmdata

memmap ([0.00000000e+00, 1.00000000e+00, 2.00000000e+00, ...,
9.99999700e+06, 9.99999800e+06, 9.99999900e+06])

>>> mmdatal[-5:] + datal[:5]

memmap ([9999995., 9999997., 9999999., 10000001., 10000003.]1)

>>> del mmdata # close access to ’test.npy’

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Saving several arrays with NPZ

The NPY format has a special mode that can save several arrays in
one single zip file (but no compression is used at all!):

>>> a = np.linspace(0, 100, 1le7)

>>> sina = np.sin(a)

>>> np.savez("test.npz", a=a, sina=sina)

>>> !file test.npz

test.npz: Zip archive data, at least v2.0 to extract

>>> arrs = np.load("test.npz")

>>> arrs <numpy.lib.npyio.NpzFile object at 0x1622090>

>>> arrs.items()

[(’a’, array([0.000000e+00, 1.000010e-05, 2.000020e-05, ...,

9.999800e+01, 9.999900e+01, 1.000000e+02])),
(’sina’, array([0.000000e+00, 1.000010e-05, 2.000020e-05, ...,
-5.063828e-01, -5.063742e-01, -5.063656e-011))]

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Pros and cons of NPY

Pros:
@ Binary format, so space-efficient.

@ Avoids duplication of data in memory during saving/loading
operations.

@ Array data accessible through memory-mapping.
Cons:

@ The memory mapping feature only allows to deal with files
that do not exceed the available virtual memory.

@ Non-standard format outside the NumPy community.

@ No other features than basic input/output (e.g. no metadata
allowed).

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Outline

@ Numerical Binary Formats

@ The HDF5 format

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

The HDF5 format

@ HDF5 (Hierarchical Data Format) is a library and file format
for storing and managing data.

@ It supports an unlimited variety of datatypes, and is designed
for flexible and efficient I/O and for high volume and complex
data.

@ Originally developed at the NCSA, and currently maintained
by The THG Group, a non for-profit organization.

@ HDF5 has been around for over twenty years, and has become
a standard de-facto format supported by many applications
(MatLab, IDL, R, Mathematica ...).

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Python interfaces

h5py is an attempt to map the HDF5 feature set to NumPy as
closely as possible:

@ It also provides access to nearly all of the HDF5 C API (the
so-called low-level API).

@ Not designed to go beyond HDF5/NumPy capabilities.

PyTables builds up an additional abstraction layer on top of HDF5
and NumPy where it implements things like:

@ An enhanced type system (enumerated, time, variable length
types and default values supported).

@ An engine for enabling complex queries and out-of-core
computations (using Numexpr behind the scenes).

@ Advanced indexing capabilities (Pro version).

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Creating an HDF5 file

>>> import tables
>>> f = tables.openFile("example.h5", "w")
>>> group = f.createGroup("/","reduced_data")
>>> ds = f.createArray(group, "array", np.array([1,2,3,4]))
>>> ds
/reduced_data/array (Array(4,)) >’
atom := Int64Atom(shape=(), dflt=0)

maindim := 0

flavor := ’numpy’
byteorder := ’little’
chunkshape := None

>>> f.close()

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Creating a table

>>> gen = ((i, i*2, i**3) for i in xrange(1000000))
>>> sa = numpy.fromiter(gen, dtype="i4,i8,f8")
>>> tab = f.createTable(f.root, ’table’, sa)

>>> tab
/table (Table(1000000,)) °*°
description := {

"f0": Int32Col(shape=(), dflt=0, pos=0),
"fi": Int64Col(shape=(), dflt=0, pos=1),
"f2": Float64Col(shape=(), dflt=0.0, pos=2)}
byteorder := ’little’

chunkshape := (8192,)

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Querying a table

>>> tab[3]

(3, 6, 27.0)

>>> tab[3:2000]

array([(3, 6, 27.0), (4, 8, 64.0), (5, 10, 125.0), ...,
(1997, 3994, 7964053973.0), (1998, 3996, 7976023992.0),
(1999, 3998, 7988005999.0)1,
dtype=[(’f0’, <idr), (°f17, ’°<i4’), (°f2’, ’°<£f8?)])

>>> tab[[3,100]]

array([(3, 6, 27.0), (100, 200, 1000000.0)1,
dtype=[(’f0’, <idr), (°f17, ’°<i4’), (°f2’, ’°<£f8?)])

>>> [v[:] for v in tab.where("(f0 > 1) & (f2 < 100)")]

[(2, 4, 8.0), (3, 6, 27.0), (4, 8, 64.0)]

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Modifying table data

>>> tab[0] = (3, 3, 3.0)
>>> tab[:4]
array([(3, 3, 3.0), (1, 2, 1.0), (2, 4, 8.0), (3, 6, 27.0)],
dtype=[(’f0’, ’<i4’), (°f1°, °<i8?), (0f2?, <£8’)])
>>> tab[[1, 3]]1 = [(4, 4, 4.0)]*2
>>> tab[:4]
array([(3, 3, 3.0), (4, 4, 4.0), (2, 4, 8.0), (4, 4, 4.0)]1,
dtype=[(’£f0’, ><i4’), (°f1’, °<i8’), (°f2’, ’<£8’)])
>>> for row in tab.where("(f0 < 4) & (f2 <= 8.)"):
row[’f1°’] = 0
row.update ()

>>> tab[:4]

array([(3, 0, 3.0), (4, 4, 4.0), (2, 0, 8.0), (4, 4, 4.0)1,
dtype=[(*£0°, ’<id’), ('f1’, °<i8’), (’£2’, ’<£8°)1)

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Annotating your datasets

>>> print tab

/table (Table(1000000,)) *

>>> tab.attrs.TITLE = "sample data"

>>> print tab

/table (Table(1000000,)) ’sample data’
>>> tab.attrs.CLASS

>TABLE’

>>> tab.attrs.mycomment = "Enjoy data!"
>>> tab.attrs.complementary_data = np.array([3,2,3])
>>> tab.attrs.complementary_data
array([3, 2, 3]1)

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Outline

@ Numerical Binary Formats

@ The NetCDF4 format

Francesc Alted Data Serialization

Why we need them?

The NPY format
Numerical Binary Formats iz [{fzrmer:

The NetCDF4 format

The NetCDF4 format

@ NetCDF (Network Common Data Form) is a set of libraries
data formats that support array-oriented scientific data.

@ NetCDF4 uses HDF5 as the underlying storage layer.

@ Creating a netCDF4 file with the netCDF4 library results in an
HDFS5 file.

@ Very spread in Oceanography, Meteorology and similar
disciplines.

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Python interfaces for NetCDF4

Scientific.I0.NetCDF: http://dirac.cnrs-orleans.fr/ScientificPython
netcdf4-python: http://code.google.com/p/netcdf4-python

Francesc Alted Data Serialization

Why we need them?
The NPY format
The HDF5 format

Numerical Binary Formats The NetCDF4 format

Creating a NetCDF4 file

>>> from netCDF4 import Dataset

>>> rootgrp = Dataset(’test.nc’, ’w’, format=’>NETCDF4’)

>>> fcstgrp = rootgrp.createGroup(’forecasts’)

>>> analgrp = rootgrp.createGroup(’analyses?)

>>> print rootgrp.groups

{’analyses’: <netCDF4._Group object at 0x24a54c30>,
>forecasts’: <netCDF4._Group object at 0x24a54bd0>}

>>> rootgrp.close()

Francesc Alted Data Serialization

Summary

@ Pickle is the most basic, but still powerful, way to serialize
Python data. But it is mainly meant for small datasets and it
is not portable.

o Relational databases are portable, mature and solid as a rock.
However, they do not interact well with NumPy and write
performance is pretty lame.

@ HDF5 / NetCDF4 formats show best performance, Python
APIs interacts well with NumPy and are extremely portable.
They lack safety features.

Francesc Alted Data Serialization

More Info

¥ David Beazley
Python — Essential Reference
Addisson-Wesley,2009

[1 Robert Kern
NPY: A Simple File Format for NumPy Arrays
NumPy Enhancement Proposal, December 2007

» The HDF Group
What is HDF57
http://www.hdfgroup.org/HDF5/whatishdf5.html

Francesc Alted Data Serialization

http://www.hdfgroup.org/HDF5/whatishdf5.html

Thank You!

Contact;

faltet@pytables.org

Francesc Alted Data Serialization

	Introduction
	The Basics
	Pickling our objects
	The shelve module

	Relational databases
	What's a relational database?
	Queries
	ORM packages

	Numerical Binary Formats
	Why we need them?
	The NPY format
	The HDF5 format
	The NetCDF4 format

	Summary

