Basic git. Interactive.

Emanuele Olivetti' Rike-Benjamin Schuppner?

"Neurolnformatics Laboratory (NILab)
Bruno Kessler Foundation (FBK), Trento, Italy
Center for Mind and Brain Sciences (CIMeC), University of Trento, Italy
http://nilab.fbk.eu
olivetti@fbk.eu

2Hu-Berlin / BCCN Berlin, Germany

http://debilski.de
rikebs@debilski.de

2010 Autumn School
“Advanced Scientific Programming in Python”

1/45

http://nilab.fbk.eu
olivetti@fbk.eu
http://debilski.de
rikebs@debilski.de

@ Version Control: git.
@ Scenario 1: single developer, local repository.
e Demo single+local

@ Scenario 2: Team of developers, central remote
repository. Minimalistic.
e Demo multi+remote

@ Extras: git branch, how to set up central repo.

Version Control: Naming & Meaning

Wikipedia
“Revision control, also known as version control, source control
or software configuration management (SCM), is the

management of changes to documents, programs, and other
information stored as computer files.”

Popular Acronyms:
e VC
e SCM
Misnaming:
o Versioni

Q: have you ever used VC? (Yes: raise your hand)

Distributed Version Control

Wikipedia: Distributed revision control (or Distributed Version

Control (Systems) (DVCS), or Decentralized Version Control)

“A fairly recent innovation in software revision control. [...] The
line between distributed and centralized systems is blurring in
some regards, especially since DVCSs can be used in a
centralized mode.”

@ There may be many central repositories.

@ Codes from disparate repositories are merged.
°

o

o

From: 2010 Python Bootcamp, Day 3 (Peter Williams).
Why We Like Git

@ Fundamental reason: extremely well-engineered,
underlying theory is solid. (Turns out Linus knows what
he’s doing.)

@ Rock-solid reliability

@ Very, very fast

@ Open-source and Free software

°

Survey: git

@ Q1: Have you heard about git?
@ Q2: Do you use git?
@ Q3: Why the “git” name? (from git FAQ)
@ Random three-letter combination that is pronounceable.

@ Acronym (global information tracker).
© Irony.

Linus Torvalds: “I name all
my projects after myself.
First Linux, now git.”

= |

http://www.merriam-webster.
com/dictionary/git

1glt d)) noun \git\

Definition of GIT

British : a foolish or worthless person

Examples of GIT
= That git of a brother of yours has ruined everything!
« <oh, don't be such a silly git, of course your mates want
you around>
Origin of GIT

variant of get, term of abuse, from det

First Known Use: 1929

Related to GIT

Synonyms: berk [British], booby, charlie (also charley)
[British], cuckoo, ding-a-ling, dingbat, ding-dong, dipstick,
doofus [slang], featherhead, fool [British], goose, half-wit,
jackass, lunatic, mooncalf, nincompoop, ninny,

ninnyhammer, nit [chiefly British], nitwit, nut, nutcase, simp, 7 /45

http://www.merriam-webster.com/dictionary/git
http://www.merriam-webster.com/dictionary/git

git

git
usage: git [OPTIONS] COMMAND [ARGS]

The most commonly used git commands are:

add Add file contents to the index
commit Record changes to the repository
diff Show changes between commits, commit

git help <command>

git status

git

Introduce yourself to git:

git config --global user.name "Emanuele
Olivetti"

git config ——-global user.email
"olivetti@fbk.eu"

45

git. Single developer + local repository.

Scenario 1: single developer + local repository.

10/45

Single+Local git. Motivations.

@ Q: do you use VC for local repo?
@ Why VC for single developer + local repository?

o First step towards a shared project.
e Backup.
o Keep memory of your work.

11/45

Single+Local git. Init.

git init
@ Creates an empty git repository.

@ Creates the git directory: .git/

working staging

. local repo
directory area P

12/45

Single+Local git. The tracking process.

git add <filename>

working directory |

git add

| staging area

git commit

| repository |

git commit -m "Let us begin."

Wikipedia

“A staging area is a location where organisms, people,
vehicles, equipment or material are assembled before use”.

13/45

Single+Local git. Add.

git add filel [file2 ...]

@ Adds new files for next commit.

@ Adds content from working dir to the staging area (index)
for next commit.

@ DOES NOT add info on file permissions other than
exec/noexec (755 / 644).

@ DOES not add directories per se.

working staging
directory area

git add >

local repo

14/45

Single+Local git. Commit.

git commit [-m "Commit message."]
Records changes from the staging area to the repository.

working staging

. local repo
directory area P

git commit

15/45

Single+Local git. Commit.

git commit filel file2

Records all changes of £ilel, £ile2 from working dir and
staging area to the repository.

working staging

. local repo
directory area P

git commit <filename>

git commit -a

Records all changes in working dir and staging area. Be

Careful!
16/45

Single+Local git. Commit names.

@ Every commitis a git-object.

@ The history of a project is a graph of objects referenced by
a 40-digit git-name: SHA1(object).

@ SHA1(object) = 160-bit Secure Hash Algorithm. NSA
Secure!

@ Examples:
$ git commit README -m "Added README."
[master dbb4929] Added README.
1 files changed, 1 insertions (+),
or
$ git log
commit dbb49293790b84f0bdcd74fd9%fabcabl. ..

Author: Emanuele Olivetti <olivetti@fbk.eu>
Date: Wed Sep 15 00:08:46 2010 +0200

17/45

Single+Local git. Diff.

git diff

Shows what changes between working directory and staging
area (index).

working staging
directory area

local repo

18/45

Single+Local git. Diff.

Q: “git add”then “git diff£”. What output?

git diff --cached shows differences between index and
last commit (HEAD).

working staging local repo
directory area

git diff --cached

19/45

Single+Local git. Logs.

git log

Shows details of the commits.

working staging

. local repo
directory area P

git
log

20/45

Single+Local git. Logs.

gitk

GUI to browse the git repository.

Mer;a rs;nc /frs;nc kernel nrsi;;uh/scm/\inux/kernelfgit/c Linus Tarvalds <tnrvalds@EEcS7D osdl nr§>
[FATCH] USB: ftdi_sio: avoid lasing received data in tty-1) 1an Abhott <abbotti@mev.co Uk

[FATCH] USB: fix ub issues Pete Zaitcew <zaitcev@redhat coms
[PATCH] PCI Hotplug: fix CPCI reference counting bug | Scott Murray <scotm@somanetworks. coms
[1464] Fix race condition in the ri_sigprocmask fastcall Christoph Lameter <clameter@sygi.com=

—feece

Merge master kernel.orgrhomesrmkslinus-2.6-arm Linus Torvalds <torvalds@ppcd70.0sdl.org>
@ [PATCH] sg traverse fix for __atapi_pio_bytes() Albert Lee <albertcc@tw.ibm.coms
[PATCH] sata_sil: Fix FIFO PCI Bus Arbitration kernel oo Jens Axhoe <axboe@suse.de>
[FATCH] ARM: Remove zero-byte sized file Russell King <rmk@dyn-B7.arm.linus.org.uks
erge reynciifraync kernel.org/pub. kernel/git‘daven| Linus Torvalds <torvalds@ppc970.0sdl.org>
* [PKT SCHED]: Fix numeric comparison in meta emaich Thomas Graf <tgrafi@suug.ch=
SHA1 ID: Find || Exi
muthor: Pete Zaitcev <zaitcev@redhat com> 2005-06-06 14:54:59 '\ [eur s
Committer: Greg Rrosh-Hartman <gregkh@suse.de> 2005-06-08 02:38:11 driversiblockiub.c

[PATCH] USB: fix ub izsues

This smoothes two imperfections

- Increase mumber of LUNs per device Erom 4 to 0. The hest solution
would be to remowe this limit altogether, but that has to wait until
the time when more than 26 hosts are allowed

- Replace mdelay with msleep in = probing routine.

Signed-off-hy: Pete Zaitcev <zaitcev@yshoo.ceom>
Signed-off-by: Greg Kroah-Hartman <gregihisuse.de>

21/45

Single+Local git. “How to clean this mess??”

git checkout <filename>

Get rid of what changed in <filename> (between working dir
and staging area).

working staging
directory area

git checkout
<file> <dir>

local repo

22/45

Single+Local git. “How to clean this mess??”.

git reset --hard HEAD

Restore all files as in the last commit.

working staging local repo
directory area

|4

23/45

Single+Local git. (Re)move.

Warning: whenever you want to remove, move or rename a
tracked file use git:

git rm <filename>
git mv <oldname> <newname>

Remember to commit these changes!

24/45

Single+Local git. Demo.

Demo: demo_git_single_local.txt

25/45

multi+remote/shared git.

Scenario 2: multiple developers + remote central repository.

26/45

multi+remote/shared git.

shared repository

developer developer developer

27/45

multi+remote/shared git.

Local . Remote
working staging] remote
(sy) (area) (Iocal repo) :

—

28/45

multi+remote/shared git.

git clone <URL>

Creates a local copy of the whole remote repository.

Local Remote
working staging local repo remote
directory area repo

Available transport protocols:
@ ssh://,git://,http://, https://, file://
Ex.: git clone git://github.com/hanke/PyMVPA
git remote -v

Shows name and URL of the remote repository.
29/45

multi+remote/shared git. Fetch.

git fetch

@ Downloads updates from remote to local repository.
@ The working directory does not change.

Local Remote
working staging local repo remote
directory area repo

30/45

multi+remote/shared git. Merge.

git merge

@ Joins development histories together.
@ Warning: merge only when all changes are committed!
@ Warning: can generate conflicts!

Local Remote
working staging local repo remote
directory area repo

< git merge

git fetch + git merge =git pull

31/45

multi+remote/shared git. Conflicts.

Conflict!

<<<<<K<< yours:sample.txt
Conflict resolution is hard;
let’s go shopping.

Git makes conflict resolution easy.
>>>>>>> theirs:sample.txt

32/45

multi+remote/shared git.

How to resolve conflicts.
@ See where conflicts are:
git diff
© Edit conflicting lines.
© Add changes to the staging area:
git add filel [...]
© Commit changes:

git commit -m "Conflicts solved."

33/45

multi+remote/shared git.

git push

@ Updates remote repository.
@ Requires fetch+merge first.

Local Remote
working staging et e remote
directory area P repo

34/45

multi+remote/shared git.

Demo: demo_git_multi_remote.txt.

Other related files:
@ create_remote_repo_sn.sh
@ collaboratorl.sh
@ collaborator2.sh
@ collaborator2.sh

35/45

@ Local branching + demo.
@ Setting up a remote shared repository + demo.

36/45

Local branching.

git branch

Shows names of local branches.

git branch new_feature
Creates a new branch named new_feature.

git checkout new_feature
Switches to branch new_feature.
git checkout master

Switches back to the master branch.

git merge new_feature

Merge new_feature changes into master.

37/45

Local branching.

Demo: demo_git_branching local.txt.

38/45

Setting up a remote+shared repository.

GOAL: | want to share my local repository so others can push.

“Why can't | just extend permissions in my local repo?”
@ Yes you can...
@ ...but your colleagues will not push (read-only).

To have it read-write: set up a remote shared repository.

shared repository

developer developer developer

39/45

Setting up a remote+shared repository.

You have a local repository and want to share it (ssh) from a
remote server.

On remote server create bare+shared repository:

@ mkdir newproject

@ set up proper group permissions: chmod g+rws newproject
@ cd newproject

@® git --bare init --shared=group

v

On local machine push your repository to remote:

@ git remote add origin

ssh://remote.com/path/newproject

@ git push origin master

Everybody clones the shared repository:

git clone ssh://remote.com/path/newproject

40/45

Setting up a remote+shared repository.

Demo: demo_git_setup_remote.txt.

41/45

Repositories available for you

git clone
PacMan!
ssh://<name>Q@escher. fuw.edu.pl/git/autumnschool/pacman

Your personal git repository:

<name>(@escher. fuw.edu.pl:personal.git

Q1: Why “<repo> "?
Just a reminder about the repository being bare.

Q2: Why “ssh://<URL>/" vS. “<URL>:" ?

absolute vs. relative (to home) path.

42/45

ssh://<name>@escher.fuw.edu.pl/git/autumnschool/pacman
<name>@escher.fuw.edu.pl:personal.git

@ Zbigniew Jedrzejewski-Szmek
Tiziano Zito
Bastian Ventur
http://progit.com

o

()

(]

@ apcmag.com
@ lwn.net

(]

http://www.markus—gattol.name/ws/scm.html

43/45

http://progit.com
apcmag.com
lwn.net
http://www.markus-gattol.name/ws/scm.html

| want to know more about git!

Understanding how git works:

@ git foundations, by Matthew Brett:
https://cirl.berkeley.edu/mb312/gitwash/
gitwash/foundation.html
http://matthew-brett.github.com/
pydagogue-doc/v0.1/foundation.html

Excellent guides:

@ Progit: http://progit.org/

@ git magic: http://www-cs-students.stanford.
edu/~blynn/gitmagic/

@ git community book: http://book.git-scm.com/

44/45

https://cirl.berkeley.edu/mb312/gitwash/gitwash/foundation.html
https://cirl.berkeley.edu/mb312/gitwash/gitwash/foundation.html
http://matthew-brett.github.com/pydagogue-doc/v0.1/foundation.html
http://matthew-brett.github.com/pydagogue-doc/v0.1/foundation.html
http://progit.org/
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://book.git-scm.com/

Cool Stuff: Code Swarm on NumPy, SciPy, ...

http://1il.youtube.com/watch?v=
wnakF24avViWTE& feature=related

45/45

http://il.youtube.com/watch?v=wnaF24aVWTE&feature=related
http://il.youtube.com/watch?v=wnaF24aVWTE&feature=related

