
Advanced Python — excercises
Excercises use Python 3 syntax! You are encouraged to use python3.1 to perform the exercises, but
python2.6 can be used just as well, with minor adjustments (mostly print(...) -> print ...).

Exercise D1 (30 min)
Write a decorator which wraps functions to log function arguments and the return value on each call.
Provide support for both positional and named arguments (your wrapper function should take both *args
and **kwargs and print them both):

>>> @logged
... def func(*args):
... return 3 + len(args)
>>> func(4, 4, 4)
you called func(4, 4, 4)
it returned 6
6

Exercise D2 (20 min)
Write a decorator to cache function invocation results. Store pairs arg:result in a dictionary in an
attribute of the function object. The function being memoized is:

def fibonacci(n):
 assert n >= 0
 if n < 2:
 return n
 else:
 return fibonacci(n-1) + fibonacci(n-2)

Excercise G1 (10 min)
Write a generator function which returns a few values. Launch it. Retrieve a value using next (a global
function). Retrieve a value using __next__ (a method of the generator object). Throw an exception into
the generator using throw (a method). Look at the traceback.

Excercise G2 (20 min)
You are writing a file browser which displays files line by line. The list of files is specified on the
commands line (in sys.argv). After displaying one line, the program waits for user input. The user can:

• press Enter to display the next line

• press n + Enter to forget the rest of the current file and start with the next file

• or anything else + Enter to display the next line

The first part is already written: it is a function which displays the lines and queries the user for input. Your
job is to write the second part — the generator read_lines with the following interface: during
construction it is passed a list of files to read. If yields line after line from the first file, then from the second
file, and so on. When the last file is exhausted, it stops. The user of the generator can also throw an
exception into the generator (SkipThisFile) which signals the generator to skip the rest of the current
file, and just yield a dummy value to be skipped.

class SkipThisFile(Exception):
 "Tells the generator to jump to the next file in list."
 pass

def read_lines(*files):
 """this is the generator to be written

 >>> list(read_lines('exercises.rst'))[:2]
 ['=============================', 'Advanced Python — excercises']
 """
 for file in files:
 yield 'dummy line'

def display_files(*files):
 source = read_lines(*files)
 for line in source:
 print(line, end='')
 inp = input()
 if inp == 'n':
 print('NEXT')
 source.throw(SkipThisFile) # return value is ignored

Exercise M1 (45 min)
The following program writes lines to a file. It has been doctored to sleep 1 second in the middle of each
line. Unfortunately the author forgot about flushing and locking :(

First write a fcntl.lockf context manager.

Convert add_user below to use your new context manager stacked with flushed to fix the program.

To check: open two terminals and run (note the ampersand to run in parallel):

python3.1 add_user.py /tmp/passwd 100&
python3.1 add_user.py /tmp/passwd 100

in one of them and in the other one

tail -f /tmp/passwd

The program (also available on the wiki page):

import sys, io, fcntl, time, datetime

def add_user(login, uid, gid, name, home, shell='/bin/bash'):
 fields = login, 'x', str(uid), str(gid), name, home, shell
 f = open(PASSWD_FILE, 'a')

 f.write(':'.join(fields[:3]) + ':')
 f.flush()
 time.sleep(1)
 f.write(':'.join(fields[3:]) + '\n')

def main(prog_name, file_name, count):
 global PASSWD_FILE

 PASSWD_FILE = file_name
 for i in range(int(count)):
 now = datetime.datetime.now()
 uid = now.minute * 60 + now.second
 gid = now.microsecond//1000
 add_user('login', uid, gid, 'name', 'home')
 print('added uid={}'.format(uid))

if __name__ == '__main__':
 sys.exit(main(*sys.argv))

Exercise D3: plugin registration system (15 min)
[optional]
This exercise is to be done at the end if time permits.

This is the plugin registration system from the lecture:

class WordProcessor:
 """
 PLUGINS = []
 def process(self, text):
 for plug in self.PLUGINS:
 text = plug().cleanup(text)
 return text

@register(WordProcessor.PLUGINS)
class CleanMdashesExtension():
 def cleanup(self, text):
 return text.replace('—', '\u2014')

…implement the register decorator!

Excercise D4 (30 min) [optional]
This exercise is to be done at the end if time permits.

Write a decorator to memoize functions with an arbitrary set of arguments. Memoization is only possible if
the arguments are hashable. If the wrapper is called with arguments which are not hashable, then the
wrapped function should just be called without caching.

Note: To use args and kwargs as dictionary keys, they must be hashable, which basically means that
they must be immutable. args is already a tuple, which is fine, but kwargs have to be converted. One
way is tuple(sorted(kwargs.items())).

Exercise D5 (15 min) [really optional]
Modify deprecated2 to take an optional argument — a function to call instead of the original function:

>>> def eot_new(): return 'EOT NEW'
>>> @deprecated3('using eot_new not {func.__name__}', eot_new)
... def eot(): return 'EOT'
>>> eot()
using eot_new not eot
'EOT NEW'

	Exercise D1 (30 min)
	Exercise D2 (20 min)
	Excercise G1 (10 min)
	Excercise G2 (20 min)
	Exercise M1 (45 min)
	Exercise D3: plugin registration system (15 min) [optional]
	Excercise D4 (30 min) [optional]
	Exercise D5 (15 min) [really optional]

