
Contents

A plan
Decorators
Decorators
The decorator
syntax
A decorator doing
smth. …
… written as a
class
Installing function
wrappers
Decorators can be
stacked
Example:
deprecated2
Example:
deprecated2
Raison d'être for
decorators
Mention of class
decorators
Example: plugin
registration
system
Problems with
decorators thus
defined
Exceptions
Exception
handling
Philosophical
interludium
Going further
than try/except
Multiple finally
levels
For completeness:
else
Why are
exceptions good?

Advanced Python
“Advanced Scientific Programming in
Python”
Day 0
Trento — October 4th, 2010

Zbigniew Jędrzejewski-Szmek
zbyszek@in.waw.pl

Examples are in Python 3!

©2010, CC BY-SA 3.0 (source code
available)

Press ‘t’ to toggle presentation/outline
mode.

A plan
decorators
exception handling
generators
context managers
py3k if time.now() - 10:30 < 0

After the lecture, some people
complained that this was 'a dive in cold
water' and that no introduction and not
enough motivation was given. To make
up for this deficiency, in the following
paragraphs I'll try to convince you, the
reader, that the presented techniques
are actually useful, and that they help
the programmer follow the Zen of
Python.

The most important Python principle
(import this) is DRY: don't repeat
yourself. Decorators and context
managers allow one to extract common
parts of the code — function or class
decoration and try/except/finally clauses
— and to put them in a seperate

Advanced Python

1 of 20

Context Managers
Context Manager
Protocol
Example
Motto “batteries
included”
Motto “batteries
included”
Exceptions and
context managers
Generators
Generators
Communication is
bi-directional!
Communication
Communication
Aggravated
communication
Synthesis
The return of the
decorator
Example: flushed
Example: testing
exceptions
Example: testing
exceptions, ctd.
Python 3
Python 3
Conversion

location.

Another part of the Zen of Python is
explicit is better than implicit. The
lengthy discussion on python-dev was
caused by the desire to make the job of
decoration simple, without repetitions,
but visible when looking at the function
header. Therefore decorator syntax puts
the decorator in a line next to the
function definition, so it's hard to miss,
and on the outside because the
decorator actually wraps the object, and
thus this is the natural order which
helps readability.

The Zen of Python also tells the
programmer that flat is better than
nested and readability counts.
Decorators, generators, and context
managers are all about splitting a
complicated structure into two or more
functions or classes, with each part
performing a single job.

Of course one might argue that the rule
simple is better than complex goes
against the techniques described here,
since they cannot really be said to be
simple, maybe with the exception of
generators. But once the decorator or
context manager is defined, using it is
simple. The defintion is indeed complex, but not complicated, once the
rules are understood. I would also argue, that those techniques do have
inherent beauty, and beautiful is better than ugly.

Decorators

Advanced Python

2 of 20

Summary
This amazing
feature
appeared in
the language
almost
apologetically
and with
concern that
it might not
be that
useful.

Bruce Eckel

photo:
freefoto.com CC
ND-NC-SA 3.0

Decorators
decorators? : passing of a function object through a filter + syntax
can work on classes or functions
can be written as classes or functions
nothing new under the sun ;)

function could be written differently
syntax equivalent to explicit decorating function call and
assignment
just cleaner

The decorator syntax

Advanced Python

3 of 20

def deco(orig_f):
 print('decorating:', orig_f)
 return orig_f

@deco
def func():
 print('in func')

def func():
 print('in func')
func = deco(func)

A decorator doing smth. …
… to remember the author and protect the V.I.I.P.

>>> @author('J.R.P.')
... def func(): pass
>>> func.author
'J.R.P.'

old style
>>> def func(): pass
>>> func = author('Joe…')(func)
>>> func.author
'Joe…'

… written as a class
set an attribute on the function

class author:
 def __init__(self, name):
 self.name = name
 def __call__(self, function):
 function.author = self.name
 return function

The same written as nested functions:

def author(name):
 def helper(orig_f):
 orig_f.author = name

Advanced Python

4 of 20

 return orig_f
 return helper

Installing function wrappers
class deprecated:
 "Print a deprecation warning once"
 def __init__(self):
 pass
 def __call__(self, func):
 self.func = func
 self.count = 0
 return self.wrapper
 def wrapper(self, *args, **kwargs):
 self.count += 1
 if self.count == 1:
 print(self.func.__name__,
 'is deprecated')
 return self.func(*args, **kwargs)

def deprecated__f(func):
 """Print a deprecation warning once

 Installs a wrapper function which
 prints a warning on first function use.

 >>> @deprecated__f
 ... def f():
 ... pass
 >>> f()
 f is deprecated

 """
 count = 0
 def wrapper(*args, **kwargs):
 nonlocal count
 count += 1
 if count == 1:
 print(func.__name__, 'is deprecated')
 return func(*args, **kwargs)
 return wrapper

Decorators can be stacked

Advanced Python

5 of 20

@author('J.P.R.')
@depreacted()
def func(): pass

old style
def func(): pass
func = author('J.P.R.')(
 deprecated(func))

Example: deprecated2
Modify deprecated to take a message to print.

>>> @deprecated2('function {func.__name__}'
... ' is deprecated')
... def eot(): return 'EOT'
>>> eot()
function eot is deprecated
'EOT'
>>> eot()
'EOT'

Example: deprecated2
class deprecated2:
 def __init__(self, message):
 self.message = message # ⇜
 def __call__(self, func):
 self.func = func
 self.count = 0
 return self.wrapper
 def wrapper(self, *args, **kwargs):
 self.count += 1
 if self.count == 1:
 fmt = self.message.format # ⇜
 print(fmt(func=self.func)) # ⇜
 return self.func(*args, **kwargs)

The same written as a function.

def deprecated2(message):
 """
 >>> @deprecated2('function {func.__name__} is deprecated')
 ... def eot(): return 'EOT'

Advanced Python

6 of 20

 >>> eot()
 function eot is deprecated
 'EOT'

 """
 def _deprecated(func):
 count = 0
 def wrapper(*args, **kwargs):
 nonlocal count
 count += 1
 if count == 1:
 print(message.format(func=func))
 return func(*args, **kwargs)
 return wrapper
 return _deprecated

Raison d'être for decorators
class K:
 def do_work(self, *args):
 pass

 @classmethod
 def create(cls, *args):
 return cls(*args)

 @staticmethod
 def method(*args):
 return 33

Mention of class decorators
same principle

much less exciting

PEP 318 ⟿ “about 834,000 results”
PEP 3129 ⟿ “about 74,900 results”

Example: plugin registration
system
class WordProcessor:

Advanced Python

7 of 20

 PLUGINS = []
 def process(self, text):
 for plug in self.PLUGINS:
 text = plug().cleanup(text)
 return text

@register(WordProcessor.PLUGINS)
class CleanMdashesExtension():
 def cleanup(self, text):
 return text.replace('—',
 '\N{em dash}')

Problems with decorators thus
defined

tracebacks introspection

repetition

Solutions

functools.update_wrapper(wrapper, wrapped)
"Update a wrapper function to look
 like the wrapped function"

module decorator

PEP 318 (function and method decorator syntax)
PEP 3129 (class decorator syntax)
http://wiki.python.org/moin/PythonDecoratorLibrary
http://docs.python.org/dev/library/functools.html
http://pypi.python.org/pypi/decorator
Bruce Eckel

Decorators I: Introduction to Python Decorators
Python Decorators II: Decorator Arguments
Python Decorators III: A Decorator-Based Build System

Exceptions

Advanced Python

8 of 20

photo: flickr.com/photos/nickwheeleroz CC BY-NC-SA 2.0

Exception handling
try:
 1/0
except ZeroDivisionError as description:
 print('got', description)
 return float('inf')

Advanced Python

9 of 20

Philosophical interludium

CHANGES = list()
def remove_change__a(change):
 if change in CHANGES:
 CHANGES.remove(change)

L
B
Y
L

def remove_change__b(change):
 try: CHANGES.remove(change)
 except ValueError: pass

E
A
F
P

CHANGES = list(range(10**7))
r(10**7); r(10**7-1); r(10**7-2)

r = remove_change__a()
r = remove_change__b()

⟿ 1.46s
⟿ 0.85s

Going further than try/except
how to make sure resources are freed?

def add_user(login, uid, gid, name, home,
 shell='/bin/bash'):
 fields = (login, str(uid), str(gid),

Advanced Python

10 of 20

 name, home, shell)
 f = open(PASSWD_FILE, 'a')
 fcntl.lockf(f.fileno(), fcntl.LOCK_EX)
 try:
 f.seek(0, io.SEEK_END)
 f.write(':'.join(fields) + '\n')
 f.flush()
 finally:
 fcntl.lockf(f.fileno(), fcntl.LOCK_UN)

Multiple finally levels
try:
 try:
 print('work')
 {}['???']
 finally:
 print('finalizer a')
 1 / 0
finally:
 print('finalizer b')

Nesting of finally levels is required if we want to make sure that all finalization
statements are executed. When more than one statement is written in the
same clause, an exception thrown by one of the staments would prevent the
following ones from running. Putting each part in a seperate level makes sure
that all parts are run independently.

For completeness: else
another less well-known thing that can dangle after a try clause…

try:
 ans = math.sqrt(num)
except ValueError:
 ans = float('nan')
else:
 print('operation succeeded!')

Why are exceptions good?
#strip_comments.py
import sys
inp = open(sys.argv[1])

Advanced Python

11 of 20

out = open(sys.argv[2], 'w')
for line in inp:
 if not line.lstrip().startswith('#'):
 print(line, file=out)

A meaningful error message when:

not enough arguments
files cannot be opened

Context Managers

Context Manager Protocol
with manager as var:
 do_something(var)

var = manager.__enter__()
try:
 do_something(var)
finally:

Advanced Python

12 of 20

 manager.__exit__()

Example
make sure output is written to file from buffers

with flushed(open('/etc/fstab', 'a')) as f:
 print('/dev/cdrom /cdrom', file=f)
os.system('mount /cdrom')

class flushed:
 def __init__(self, obj):
 self.obj = obj
 def __enter__(self):
 return self.obj
 def __exit__(self, *args):
 self.obj.flush()

Motto “batteries included”
with open(filename) as f:
 f.write(...)

all file-like objects:
file ➔ automatically closed
fileinput, tempfile (py>=3.2)
bz2.BZFile, gzip.GZFile, tar.TarFile, zip.ZipFile
ftplib ➔ close connection (py>=3.2)

Motto “batteries included”
locks

multiprocessing.RLock ➔ automatically unlock
multiprocessing.Semaphore
memoryview ➔ automatically released (py>=3.2)

decimal.getlocalcontext ➔ precision
winreg.HKEY ➔ open and close key
warnings.catch_warnings ➔ kill warnings
contextlib.closes

Exceptions and context managers
An exception thrown in the with-block is given to __exit__. If __exit__ returns

Advanced Python

13 of 20

True, the exception is swallowed. Otherwise, the exception is rethrown
after exiting all context managers.

Taken from py.test and unittest.TestCase.

with assert_raises(KeyError):
 {}['foo']

class assert_raises:
 def __init__(self, type):
 self.type = type
 def __enter__(self):
 pass
 def __exit__(self, type, value, traceback):
 if type is None:
 raise AssertionError('no exc.')
 if issubclass(type, self.type):
 return True
 raise AssertionError('wrong exc.') from value

Generators

Advanced Python

14 of 20

photo: freefoto.com CC ND-NC-SA 3.0

Generators
>>> def words():
... print('generator running…')
... yield 'gugu'
... yield 'bebe'
... return
>>> source = words()
>>> for word in source:
... print('\N{rightwards arrow}', word)
generator running…
→ gugu
→ bebe

Idiomatic Python by David Goodger

Advanced Python

15 of 20

Communication is bi-directional!
generator can yield and raise
the caller can throw, send, and close

images/caller-generator.svg

Communication
images/caller-generator-1.svg

>>> def generator():
... print('executing …', end=' ')
... yield 'X'
... Z = yield 'Y'
... print('got', ans, '…', end=' ')
>>> g = generator()
>>> ans = next(g); print(ans)
executing … X
>>> ans = next(g); print(ans)
Y

Communication
images/caller-generator-2.svg

>>> def generator():
... print('executing …', end=' ')
... Z = yield; print('got', Z, '…', end=' ')
... Z2 = yield; print('got', Z2)
>>> g = generator()
>>> ans = next(g); print(ans)
executing … None
>>> ans = g.send('Z'); print(ans)
got Z … None

Aggravated communication
>>> def strange():
... try:
... yield 'good'
... except Exception as e:
... yield 'bad'

Advanced Python

16 of 20

... yield 'done'
>>> gen = strange()
>>> next(gen)
'good'
>>> gen.throw(ValueError)
'bad'
>>> next(gen)
'done'

Synthesis
images/power_station.jpg

photo: freefoto.com CC ND-NC-SA 3.0

The return of the decorator
@contextlib.contextmanager
def some_generator(<arguments>):
 <setup>
 try:
 yield <value>
 finally:
 <cleanup>

Example: flushed
class flushed:
 def __init__(self, obj):
 self.obj = obj
 def __enter__(self):
 return self.obj
 def __exit__(self, *args):
 self.obj.flush()

@contextlib.contextmanager
def flushed(obj):
 try:
 yield obj
 finally:
 obj.flush()

Example: testing exceptions

Advanced Python

17 of 20

class assert_raises:
 def __init__(self, type):
 self.type = type
 def __enter__(self):
 pass
 def __exit__(self, type, value, traceback):
 if type is None:
 raise AssertionError('no exc. raised')
 if issubclass(type, self.type):
 return True
 raise AssertionError(
 'wrong exc. raised') from value

Example: testing exceptions, ctd.
@contextlib.contextmanager
def assert_raises__2(type):
 try:
 yield
 except type:
 return
 except Exception as value:
 raise AssertionError(
 'wrong exc. raised') from value
 else:
 raise AssertionError(
 'exception was not raised')

>>> class assert_raises:
... def __init__(self, type):
... self.type = type
... def __enter__(self):
... pass
... def __exit__(self, type, value, traceback):
... if type is None:
... raise AssertionError('exception was not raised')
... if issubclass(type, self.type):
... return True
... raise AssertionError('wrong exc. was raised') from value...
>>>
with assert_raises(KeyError): {}['key']
...
>>> with assert_raises(KeyError): 1/0
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

Advanced Python

18 of 20

ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 11, in __exit__
AssertionError: wrong exc. was raised
>>> with assert_raises(KeyError): pass
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 8, in __exit__
AssertionError: exception was not raised

>>> @contextlib.contextmanager
... def assert_raises(type):
... try:
... yield
... except type:
... return
... except Exception as value:
... raise AssertionError('wrong exc. was raised') from value...
 else:
... raise AssertionError('exception was not raised')
...
>>> with assert_raises(KeyError): {}['key']
...
>>> with assert_raises(KeyError): 1/0
...
Traceback (most recent call last):
 File "<stdin>", line 4, in assert_raises
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.2/contextlib.py", line 46, in __exit__
 self.gen.throw(type, value, traceback)
 File "<stdin>", line 8, in assert_raises
AssertionError: wrong exc. was raised
>>> with assert_raises(KeyError): pass
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

Advanced Python

19 of 20

 File "/usr/local/lib/python3.2/contextlib.py", line 35, in __exit__
 next(self.gen)
 File "<stdin>", line 10, in assert_raises
AssertionError: exception was not raised

Python 3
images/python.jpg

photo: flickr.com/photos/nasmac CC BY-SA 2.0

Python 3
currently 3.2

str/bytes ⇜ unicode/str
new string formatting

keywords
nonlocal
as, from
with

module changes

Conversion
“good Python 2.6 code is not very different from Python 3.0”

2to3

~/mdp$ python3 setup.py install
Converting to Python3 via 2to3...
RefactoringTool: Skipping implicit fixer: buffer
...
RefactoringTool: Refactored build/py3k/mdp/test/test_parallelhinet.py
RefactoringTool: Refactored build/py3k/mdp/parallel/parallelhinet.py
RefactoringTool: Files that were modified:
RefactoringTool: build/py3k/mdp/test/test_parallelhinet.py
RefactoringTool: build/py3k/mdp/parallel/parallelhinet.py
running install
...
Writing /usr/lib/python3.1/site-packages/MDP-2.6-py3.1.egg-info

3to2

Advanced Python

20 of 20

