
Pragmatic Concurrency for Python

See below: The OpenCL exercises of course require an OpenCL implemtation. If you would
like to have a go at the OpenCL exercise, A script is provided below to install it the AMD/ATI
CPU-based OpenCL runtime on the virtualbox, but it takes about 10-20minutes to build.

Topics covered

Parallel programming concepts
ipython (ipcluster)
mpi4py (Message Passing Interface for Python)
pyopencl

Exercises

The purpose of these exercises is not to amount to killer speed-ups (a laptop is not the right
hardware for that), but rather to run and modify a few examples, become comfortable with
APIs, and implement some simple parallel programs.

= mpi4py =

1) Matrix Multiplication

Download and run the matrix multiplication examples for mpi4py, ipython and
multiprocessing (a shared memory approach for Python).

matmul.tar.gz

Configure them to have the same matrix sizes, and compare speeds.

For ipython, you need to start an ipcluster:

 $ ipcluster local -n 2

Where -n X is the number of slave processes to start.

For mpi4py, you must start: “mpdboot”. Verify it is running with “mpdtrace”.

2) IPython map-reduce

Using an ipython “map” (scatter&execute) operation, get a collection of processes to count
the occurrences of a word in a collection of documents, and then reduce the results to a total
count.

See also: http://en.wikipedia.org/wiki/MapReduce [http://en.wikipedia.org/wiki/MapReduce],
http://labs.google.com/papers/mapreduce.html [http://labs.google.com/papers/mapreduce.html]

= OpenCL =

OpenCL - Open Computing Language

“OpenCL (Open Computing Language) is the first open, royalty-free standard for general-

materials:parallel [Autumn School "Advanced Scientific Programming in Python"]

1 of 3

purpose parallel programming of heterogeneous systems. OpenCL provides a uniform
programming environment for software developers to write efficient, portable code for
high-performance compute servers, desktop computer systems and handheld devices using a
diverse mix of multi-core CPUs, GPUs, Cell-type architectures and other parallel processors
such as DSPs.”

– http://www.khronos.org/opencl [http://www.khronos.org/opencl]

We will get comfortable with OpenCL using the AMD Multi-core CPU OpenCL implementation
of OpenCL v1.1. This implementation runs on all x86 SSE2 CPUs. Installing an OpenCL driver
for a recent ATI or NVIDIA GPU can result in significant (10x-100x) speedup for suitable
applications.

1) OpenCL Matrix Multiply

Install as below
Following the pyopencl_f4simple_matmul.py example included in the installation,
write an opencl kernel for matrix multiplication where each global_id computes 1
element in the output matrix.

Hint: Your “host” code will be almost identical to “pyopencl_f4simple_matmul.py”, you need
to write a new kernel which is simpler, in that it only has to loop over the row of A and the
column of B, summing as it goes and writing to the location in C determined by the thread's
global_id.

2) OpenCL sum (reducing add)

The goal of this exercise is to optimize a reduction operation using local memory.
Unfortunately, I don't think the CPU implementation has fast local memory. For those who
get this far, we can try out the solutions you produce below on the GPU to show that for
reduction operations, local memory give a significant performance boost.

2.1) Implement a reduction operation with the “gather funnel” architecture as presented in
the lecture. Use a workgroup size=1, and write “pair answers” directly to global memory.

2.2) Implement a reduction operation which uses an optimal workgroup size for your GPU
(NV=32, ATI=64), and inside this workgroup, reduces in a local memory buffer, before
proceeding to a global memory reduction.

How big is the speed up? → GPU local memory allows “fine grained” parallelism.

Further reading: http://neuralensemble.org/meetings/talks
/CodeJam3_Kloeckner_PyOpenCL.pdf [http://neuralensemble.org/meetings/talks
/CodeJam3_Kloeckner_PyOpenCL.pdf]

= OpenCL Installation =

To get started, download the file below and save it to your vbox in its own directory (i.e.
~/opencl): pyas-opencl-cpu.tar.gz

Change into the directory containing the file and at a terminal:

$ tar -zxvf pyas-opencl-cpu.tar.gz

$ cd pyas-opencl-cpu $ python install_amd_opencl.py

materials:parallel [Autumn School "Advanced Scientific Programming in Python"]

2 of 3

This will take ~10-20mins, so go and have a tea-break :P

materials/parallel.txt · Last modified: 2010/10/07 15:33 by python-faculty

Except where otherwise noted, content on this wiki is licensed under the following license:CC
Attribution-Noncommercial-Share Alike 3.0 Unported [http://creativecommons.org/licenses
/by-nc-sa/3.0/]

materials:parallel [Autumn School "Advanced Scientific Programming in Python"]

3 of 3

