
The Pelita contest
(a brief introduction)

Advanced Scientific Programming in Python
#asppAPAC2018

The Pelita contest
(a brief introduction)

Rike-Benjamin Schuppner
Institute for Theoretical Biologie | HU Berlin

rikebs@debilski.de // debilski.de // @debilski

mailto:rikebs@debilski.de?subject=

In short

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

A maze

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Moving around

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Enemy bots

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://img.timeinc.net/time/photoessays/2008/top10_1950s/top10_1950s_them.jpg

Attack

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Pelita

Before you ask

•Pelita
•Actor-based Toolkit for Interactive

Language Education in Python
•‘Pill-eater’
•Created 2011–2012 especially for the

summer school
•(Idea from John DeNero and Dan Klein, UC

Berkeley¹)

¹ http://www.denero.org/content/pubs/eaai10_denero_pacman.pdf

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Authors

• git shortlog -sn 
Rike-Benjamin Schuppner 
Valentin Haenel  
Tiziano Zito  
Zbigniew Jędrzejewski-Szmek 
Bastian Venthur 
Pietro Berkes 
Jakob Jordan 
Pauli Virtanen 
Nicola Chiapolini 
abject 
DoriekeG 
Stefan Appelhoff 
Anastasis Georgoulas  
Sasza Kijek 
Anna Chabuda  
Christian Steigies 
Bartosz Telenczuk 
Ola Pidde  
Francesc Alted

Overview

! Each Team owns two Bots
! Each Bot is controlled by a Player
! Harvester or Destroyer Bots
! Bots are Destroyers in homezone
! Harvesters in enemy’s homezone
! Game ends when all food pellets are eaten

Overview

•Each Team owns two Bots

Bots for team 1

Bots for team 0

Overview

•Each Team owns two Bots
•Each Bot is controlled by a Player

Bots for team 0

Bots for team 1

Overview

•Each Team owns two Bots
•Each Bot is controlled by a Player
•Harvester or Destroyer Bots

Overview

•Each Team owns two Bots
•Each Bot is controlled by a Player
•Harvester or Destroyer Bots
•Bots are Destroyers in homezone
•Harvesters in enemy’s homezone
•Game ends when all food pellets are eaten

Controlling the bots

https://drafthouse.com/show/pi-on-pi-day

https://drafthouse.com/show/pi-on-pi-day

• Careful: Invalid return values of get_move result in a random move. 
(You could wrap get_move in a decorator, if you are unsure.)

from pelita.datamodel import east
from pelita.player import AbstractPlayer

class UnidirectionalPlayer(AbstractPlayer):
 def get_move(self):
 return east

class DrunkPlayer(AbstractPlayer):
 def get_move(self):
 directions = self.legal_moves
 random_dir = self.rnd.choice(directions)
 return random_dir

My first players

API examples

•In your get_move method, information about the current universe and food situation is available.
See the documentation for more details.

•self.current_pos 
 Where am I?

•self.me  
 Which bot am I controlling?

•self.enemy_bots  
 Who and where are the other bots?

•self.enemy_food  
 Which are the positions of the food pellets?

•self.current_uni 
Retrieve the universe you live in.

•self.current_uni.maze  
How does my world look like?

•self.legal_moves 
Where can I go?

•self.me.is_destroyer  
Am I dangerous?

Building a team

•A team consists of two players (and a
name)

•Create it using the SimpleTeam class
•SimpleTeam("Magnificent Team", GoodPlayer(),

RemarkablePlayer())

•Export your team using the team function
• def team(): 

 return SimpleTeam(…)  

The rules

http://filmscoreclicktrack.com/2013/01/the-ten-commandments-of-film-music/

http://filmscoreclicktrack.com/2013/01/the-ten-commandments-of-film-music/

The rules

•Eating: When a Bot eats a food pellet, the food is permanently removed
and one point is scored for that Bot’s team.

•Timeout: Each Player only has 3 seconds to return a valid move. If it
doesn’t, a random move is executed. (All later return values are
discarded.)  
5 timeouts and you’re out!

•Eating another Bot: When a Bot is eaten by an opposing destroyer, it
returns to its starting position (as a harvester). 5 points are awarded for
eating an opponent.

•Winning: A game ends when either one team eats all of the opponents’ food
pellets, or the team with more points after 300 rounds.

•Observations: Bots can only observe an opponent’s exact position, if they
or their teammate are within 5 squares of the opponent bot. If they are
further away, the opponent’s positions are noised.

Demo Time

•Now, let’s build an example player

Demo bots

•In pelita/player directory
•There are hidden bots on our servers
•We tell you how to use them when it’s

time

Testing

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Testing

•Two ways to test your Players
•first: Simply run the game and test by

watching
•$ pelita MyTeam EnemyTeam

•second: Write proper tests and test by
testing
•Example in the template

Debugging

http://www.moviemail.com/images/large/computer-chess-35397_1.jpg

http://www.moviemail.com/images/large/computer-chess-35397_1.jpg

Debugging

• Use a pre-defined DebuggablePlayer to explore the
API

• class DebuggablePlayer(AbstractPlayer): 
 def get_move(self):  
 direction = datamodel.stop  
 pdb.set_trace()  
 return direction

• pelita --no-timeout DebuggablePlayer
• (Pdb) p self.me

http://self.me

Tournament

http://magiaeimagem.files.wordpress.com/2010/02/ingmar-bergman-the-seventh-seal.jpg

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Tournament

•Two stages mode
•first: all-against-all (round robin)
•then: knockout

Tournament

•Clone the group repository
•It contains a module in team/. (Uses __init__.py)
•Exports a ‘team’ method: 
 
 def team(): 
 return SimpleTeam("The Winners", MyPlayer(),
MyPlayer())

•Run it as  
 pelita groupN/team

•Additionally contains util and testing repositories
•Test with py.test or simply run ‘make test’
•Team can run on either side of the map. Quick test

with ‘make left’, ‘make right’.

Notes on writing

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Notes on writing

•Mazes don’t have dead-ends
•Hard to catch another bot which outruns

you
•We’d like to see bots which combine their

powers and attack from two sides
•Layouts are fixed and you can check them

all before
•(There are pathological layouts in layouts/

bad. Useful to find edge cases.)

Notes on writing

•Think about shortest-path algorithms
•Keep track of opponents
•Investigate communication between the

Players
•Re-use your code
•Think about working in a team

Notes on writing

•Use the internal random number generator:
•instead of
•random.choice

•you use
•self.rnd.choice

•(more stable)

Notes on writing

•The match environment:
•standard anaconda installation
•also: pylint (just so you know)
•additional packages may or may not be

negotiable

Timeline

•Thursday 6pm–8pm: Group work
•Friday 2pm–6pm: Group work
•Friday 6pm: First report
•Saturday 8.30am–17pm: Group work
•Saturday 17.30pm: Final report and

Tournament
• Thereafter: alcohol-fuelled discussions about that one bug that

was responsible for it all

Getting ready

•Clone the pelita and group repos: 
git clone https://github.com/ASPP/pelita.git 
git clone https://github.com/ASPP/groupN.git

•Install pelita: 
pip install git+https://github.com/ASPP/pelita.git

•Run a simple demo game:  
cd groupN 
pelita groupN/team

•For help: 
pelita --help

•See the Pelita documentation:  
https://ASPP.github.io/pelita

•Questions? Ask the tutors.

https://ASPP.github.io/pelita

Repo closes

http://25.media.tumblr.com/tumblr_m3vmn8RTTH1qathv6o1_500.png

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Repo closes

Saturday, 5pm.
http://25.media.tumblr.com/tumblr_m3vmn8RTTH1qathv6o1_500.png

http://verdoux.wordpress.com/2009/06/09/the-shining-1980/

Movie stills

• ‘Them’ (1954, dir. Gordon Douglas)
• ‘The Ten Commandments’ (1956, dir. Cecil B.

DeMille)
• ‘Det sjunde inseglet’ (1957, dir. Ingmar

Bergman)
• ‘Smultronstället’ (1957, dir. Ingmar Bergman)
• ‘The Shining’ (1980, dir. Stanley Kubrick)
• ‘Pi’ (1998, dir. Darren Aronofsky)

• ‘Computer Chess’ (2013, dir. Andrew Bujalski)

http://en.wikipedia.org/wiki/Gordon_Douglas_(director)
http://de.wikipedia.org/wiki/Cecil_B._DeMille
http://de.wikipedia.org/wiki/Cecil_B._DeMille
http://www.imdb.com/name/nm0029049/?ref_=tt_ov_dr

